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Foreword

Some years ago, I discussed with the Springer publishing company the issue of
a book on Galileo because the contours of the European development began to
evolve and the puzzle of so many contributing pieces revealed some recognizable
features. Springer, however, successfully convinced me to combine the planned
Galileo book with the existing “GPS — theory and practice” book. Originally, I had
declared the fifth edition of this book as the last one. However, in combination
with Galileo, the generic parts could easily be used after an appropriate update.
Since GLONASS showed clear indications of a soon renaissance after a very long
period of insufficient maintenance with respect to the number of available satellites,
a proper consideration in the book was also required.

“GNSS - GPS, GLONASS, Galileo & more” — is this title correct? This sim-
ple question is not that easily to be answered. Following a definition as given in
the document A/CONF.184/BP/4 on satellite navigation and location systems pub-
lished in 1998 by the United Nations as one contribution in the frame of the Third
United Nations Conference on the Exploration and Peaceful Uses of Outer Space,
“the Global Navigation Satellite System (GNSS) is a space-based radio positioning
system that includes one or more satellite constellations, augmented as necessary
to support the intended operation, and that provides 24-hour three-dimensional po-
sition, velocity, and time information to suitably equipped users anywhere on, or
near, the surface of the earth (and sometimes off earth)”. The definition continues
with the two (current) core elements of satellite navigation systems, namely GPS
and GLONASS.

The title “GNSS — GPS, GLONASS, Galileo & more” adequately fits into this
definition. However, it is necessary to spend a few more sentences on this sub-
ject because the use of the acronym GNSS is not unique. By a large majority, the
acronym GNSS is used for global navigation satellite systems, where the point is
the plural of the word “system”. Some authors like Glen Gibbons, the editor of the
magazine Inside GNSS, even stress this by writing GNSSes. The plural of the word
“system” is justified by the fact that there are more than one system, e.g., GPS and
GLONASS, and each of these systems is a global navigation satellite system.

However, in the strict sense of the definition given above, considering these
systems together and denoting them by a single term yields (now singular!) the
global navigation satellite system.

There is one more item of the subtitle to be discussed. The ampersand “&” is
a symbol standing for the word “and”. Since there is no series comma between the
word “Galileo” and the ampersand (because it does not look nicely), “Galileo &
more” form one entity. This may be argued by the similarity of the current stage



viii

of development and deployment of Galileo and the other systems like the Chinese
Beidou or the Indian IRNSS.

This book is a university-level introductory textbook. As long as possible, the book
sticks to GNSS in the generic sense to describe various reference systems, satel-
lite orbits, satellite signals, observables, mathematical models for positioning, data
processing, and data transformation. With respect to the individual systems GPS,
GLONASS, Galileo, and others, primarily the specific reference systems, the ser-
vices, the space and the control segment, as well as the signal structure are de-
scribed. Thus, it is really a book primarily on GNSS to cover also possibly evolving
future systems.

The reader should be aware of the fact that the main scientific background of all
authors is geodesy. This is narrowed even more by the fact that the Graz University
of Technology is their common alma mater.

Herbert Lichtenegger and 1 are members of the Institute of Navigation and
Satellite Geodesy of the Graz University of Technology. Elmar Wasle has been
employed at the TeleConsult Austria GmbH since 2001, a company dealing with
national and international research and development projects on GNSS. He is also
linked to the same institute by teaching Galileo in a regular course.

This is important to stress because the geodetic background and geodetic per-
spectives may sometimes dominate.

Dr. Benjamin W. Remondi, retired from the US National Geodetic Survey, de-
serves credit and thanks. He has carefully read and corrected almost the full vol-
ume. His many suggestions and improvements, critical remarks and proposals are
gratefully acknowledged.

Dipl.-Ing. Hans-Peter Ranner from the Institute of Navigation and Satellite
Geodesy of the Graz University of Technology has ambitiously supported the gen-
esis of the book. He has helped in many respects, e.g., by searching for proper
references, by structuring some concepts for the derivation of formulas, or by re-
calculating some of the numerical examples.

Prof. Dr. Manfred Wieser from the Institute of Navigation and Satellite Geodesy
of the Graz University of Technology has given us a special lecture on how to
correctly interpret and fully understand rotation matrices.

The index of the book was produced using a computer program written by
Elmar Wasle. This program also helped in the detection of spelling errors.

The book is compiled based on the text system I£IEX and the figures are drawn
by using Core]DRAW.

We are also grateful to the Springer publishing company for supporting advice
and cooperation.

April 2007 B. Hofmann-Wellenhof



Preface

The book is divided into 14 chapters. A list of acronyms, a section of references,
and a detailed index, which should immediately help in finding certain topics of
interest, complement the book.

The first chapter provides a brief historical review. It shows the origins of sur-
veying and how global surveying techniques have been developed. In addition, the
main aspects of positioning and navigating using satellites are described.

The second chapter deals with the reference systems, such as coordinate and
time systems. The celestial and the terrestrial reference frames are explained in the
section on coordinate systems, and the transformation between them is shown. The
definition of different times is given in the section on time systems, together with
appropriate conversion formulas.

The third chapter is dedicated to satellite orbits. This chapter specifically de-
scribes orbit representation, the determination of the Keplerian and the perturbed
motion, as well as the dissemination of the orbital data.

The fourth chapter covers the satellite signal in a generic form. It shows the
fundamentals of the signal structure with its various components and the principles
of signal processing.

The fifth chapter deals with the observables. The data acquisition comprises
code and phase pseudoranges and Doppler data. The chapter also contains the data
combinations, both the phase combinations and the phase/code range combina-
tions. Influences affecting the observables are described: the atmospheric and rela-
tivistic effects, the impact of the antenna phase center, and multipath.

The sixth chapter covers mathematical models for positioning. Models for ob-
served data are investigated. Therefore, models for point positioning, differential
positioning, and relative positioning, based on various data sets, are derived.

The seventh chapter comprises the data processing and deals with cycle slip
detection and repair. This chapter also discusses phase ambiguity resolution. The
method of least-squares adjustment is assumed to be known to the reader and, there-
fore, only a brief review (including the principle of Kalman filtering) is presented.
Consequently, no details are given apart from the linearization of the mathematical
models, which are the input for the adjustment procedure.

The eighth chapter links the GNSS results to a local datum. The necessary
transformations are given. The combination of GNSS and terrestrial data is also
considered.

The chapters nine through eleven focus on GPS, GLONASS, and Galileo. The
respective reference systems for coordinates and time are explained and the space
segment and the control segment are described. The signal structure is specified.



The twelfth chapter deals with additional system developments and investiga-
tions like Beidou, QZSS, and others. Also differential systems and system augmen-
tations like WAAS, EGNOS, and others are treated.

The thirteenth chapter describes some applications of GNSS. Among some oth-
ers, position determination, attitude determination, and time transfer are described
in a general way. The combination of satellite-based systems per se and the integra-
tion with other systems, such as inertial navigation systems (INS), are mentioned.

The fourteenth chapter deals with the future of GNSS and how the user may
benefit from the ongoing development. This future will substantially be affected by
the international competition on the GNSS market.

In the list of abbreviations and acronyms, the first letter of the explanations is al-
ways a capital letter; otherwise, capital letters are generally used only if a distinct
organization or a uniquely specified system is described. Within the text, the writ-
ing appears analogously. When the plural of an acronym is needed, no lowercase
“s” is added. Articles before acronyms are frequently omitted even if they would
be required when replacing the acronyms by their explanations.

Symbols representing a vector or a matrix are written in boldface. To indicate a
transposition, the superscript “T” is used. The inner or scalar product of two vectors
is indicated by a dot “-”. The norm of a vector, i.e., its length, is indicated by two
double-bars “||”. Vectors not related to matrices are written either as column or as
row vectors, whatever is more convenient.

Geodesists will not find the traditional “+” for accuracy or precision values.
Implicitly, this double sign is certainly implied. Thus, if a measured distance of
100 m has a precision of 0.05 m, the geodetic writing (100 + 0.05) m means that
the solution may be in the range of 99.95 m and 100.05 m.

Internet citations within the text omit the part “http://” if the address con-
tains “www’’; therefore, “www.esa.int” means “http://www.esa.int”. Also, there are
no dates given to specify a guaranteed correctness of the address. Implicitly this
means, all Internet addresses were tested to work properly before the manuscript
was handed over to the publisher in April 2007.

Usually, Internet addresses given in the text are not repeated in the list of ref-
erences. Therefore, the list of references does not yield a complete picture of the
references used.

The use of the Internet sources caused some troubles for the following reason.
When looking for a proper and concise explanation or definition, quite often identi-
cal descriptions were found at different locations. So the unsolvable problem arose
to figure out the earlier and original source. In these cases, sometimes the decision
was made, to avoid a possible conflict of interests, by omitting the citation of the
source at all. This means that some phrases or sentences may have been adapted
from Internet sources. On the other side, as soon as this book is released, it may
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and will also serve as an input source for several homepages.

The (American) spelling of a word is adopted from Webster’s Dictionary of the
English Language (third edition, unabridged), which may also be accessed elec-
tronically at www.merriam-webster.com. Apart from typical differences like the
American “leveling” in contrast to the British “levelling”, this may lead to other
divergences when comparing dictionaries. Webster’s Dictionary always combines
the negation “non” and the following word without hyphen unless a capital let-
ter follows. Therefore “nongravitational”, “nonpropulsed”, “nonsimultaneity” and
“non-European” are corresponding spellings.

For the bibliographical references, the general guideline was to cite no source
published before 1990. However, this rule needs an exception for some publications
playing a fundamental role.

Finally, the authors do not endorse products or manufacturers. The inclusion
by name of a commercial company or product does not constitute an endorsement
by the authors. In principle, such inclusions were avoided whenever possible. Only
those names which played a key role in the technological development are men-
tioned for historical purposes.

April 2007 B. Hofmann-Wellenhof H. Lichtenegger E. Wasle
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Abbreviations

ACF
A/D
AFB
AFS
AGC
AGNSS
AL
AltBOC
AOC
AOR
APOS
ARGOS
ARNS
AROF
ARP
ARPL
A-S
BCRS
BDT
BER
BIPM

BNTS
BOC
BPF
BPSK
C/A
CDMA
CEP
CEP
CHAMP
CIGNET
CIO
CIR
C/Np
C/NAV

Autocorrelation function

Analog to digital

Air force base

Atomic frequency standard

Automatic gain control

Assisted (or aided) GNSS

Alarm/alert limit

Alternative binary offset carrier

Auxiliary output chip

Atlantic ocean region

Austrian positioning service

Advanced research and global observation satellite
Aeronautical radionavigation service
Ambiguity resolution on-the-fly

Antenna reference point

Aeronomy and Radiopropagation Laboratory
Anti-spoofing

Barycentric celestial reference system
Barycentric dynamic time

Bit error rate

Bureau International des Poids et Mesures
(International Bureau of Weights and Measures)
Beidou navigation test satellite

Binary offset carrier

Band-pass filter

Binary phase-shifted key
Coarse/acquisition

Code division multiple access

Celestial ephemeris pole

Circular error probable

Challenging minisatellite payload (mission)
Cooperative international GPS network
Conventional international origin

Cascade integer resolution

Carrier-to-noise power density ratio
Commercial navigation message
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CNES Centre National d’Etudes Spatiales
(National Center for Space Research)

CODE Center for Orbit Determination in Europe

CORS Continuously operating reference station

COSPAS Cosmicheskaya sistyema poiska avariynich sudov
(Space system for the search of vessels in distress)

CRC Cyclic redundancy check

CRF Celestial reference frame

CRPA Controlled reception pattern antenna

CRS Celestial reference system

CS Commercial service

CSOC Consolidated Space Operations Center

DARPA Defense Advanced Research Projects Agency

DASS Distress alerting satellite system

DD Double-difference

DEM Digital elevation model

DGNSS Differential GNSS

DGPS Differential GPS

DLL Delay lock loop

DMA Defense Mapping Agency

DME Distance measuring equipment

DoD Department of Defense

DOP Dilution of precision

DORIS Doppler orbitography by radiopositioning integrated on satellite

DoT Department of Transportation

DRMS Distance root mean square

DSP Digital signal processor

EC European Community

ECAC European Civil Aviation Conference

ECEF Earth-centered, earth-fixed (coordinates)

EDAS EGNOS data access system

EGM96 Earth Gravitational Model 1996

EGNOS European geostationary navigation overlay service

EIRP Equivalent isotropic radiated power

EKF Extended Kalman filter

ENU East, north, up

EOP Earth orientation parameter

ERNP EU radionavigation plan

ERTMS European rail traffic management system

ESA European Space Agency

ESTB EGNOS system test bed
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EU
EUPOS
EWAN
FAA
FARA
FASF
FCC
FDF
FDMA
FEC
FGCS
FLL
F/NAV
FOC
FRP
GACF
GAGAN
GALA
GATE
GBAS
GCC
GCRS
GCS
GDGPS
GDOP
GEO
GES
GGSP
GGTO
GIM
GIOVE
GIS
GIVD
GIVE
GJU
GLONASS

GMS
G/NAV
GNSS
GOC
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European Union

European position (determination system)
EGNOS wide-area network

Federal Aviation Administration

Fast ambiguity resolution approach
Fast ambiguity search filter

Federal Communications Commission
Flight dynamics facility

Frequency division multiple access
Forward error correction

Federal Geodetic Control Subcommittee
Frequency lock loop

Freely accessible navigation message
Full operational capability

Federal radionavigation plan

Ground asset control facility

GPS and geoaugmented navigation
Galileo overall architecture definition
Galileo test and development environment
Ground-based augmentation system
Ground control center

Geocentric celestial reference system
Ground control segment

Global DGPS

Geometric dilution of precision
Geostationary (satellite)

Ground earth station

Galileo geodetic service provider

GPS to Galileo time offset

Global ionosphere map

Galileo in-orbit validation element
Geographic information system

Grid ionospheric vertical delay

Grid ionospheric vertical error

Galileo Joint Undertaking
Global’naya Navigatsionnaya Sputnikovaya Sistema
(Global Navigation Satellite System)
Ground mission segment
Governmental navigation message
Global navigation satellite system
Galileo operating company
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GOCE
GOTEX
GPS
GRACE
GRAS
GRS-80
GSA
GSFC
GSS
GST
GSTB
GTRF
HANDGPS
HDOP
HEO
HIRAN
HLD
HMI
HOW
HPL
HTTP
IAC
IAG
IAU
ICAO
ICD
ICRF
IERS
IF
IGEB
IGEX-98
IGP
IGS
IMO
I/NAV
INS
10C
ION
IOR
0V
IPF

Abbreviations

Gravity field and steady-state ocean circulation explorer (mission)
Global orbit tracking experiment

Global Positioning System

Gravity recovery and climate experiment
Ground-based regional augmentation system
Geodetic Reference System 1980

GNSS Supervisory Authority

Goddard Space Flight Center

Galileo sensor station

Galileo system time

Galileo system test bed

Galileo terrestrial reference frame
High-accuracy nationwide DGPS
Horizontal dilution of precision

Highly inclined elliptical orbit (satellite)
High range navigation (system)

High level definition

Hazardously misleading information
Hand-over word

Horizontal protection level

Hypertext transfer protocol

Information Analytical Center
International Association of Geodesy
International Astronomical Union
International Civil Aviation Organization
Interface control document

International celestial reference frame
International Earth Rotation Service
Integrity flag; intermediate frequency
Interagency GPS Executive Board
International GLONASS Experiment 1998
Tonospheric grid point

International GNSS (formerly GPS) Service for Geodynamics
International Maritime Organization
Integrity navigation message

Inertial navigation system

Initial operational capability

Institute of Navigation

Indian ocean region

In-orbit validation

Integrity processing facility
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I/Q
IRM
IRNSS
IRP
ITCAR
ITRF
ITS
ITU
ITU-R
IVHS
Iwv
D

JGS
JPL
JPO
LAAS
LAD
LADGNSS
LAMBDA
LBS
LEO
LEP
LFSR
LHCP
LLR
LNA
LO
LOGIC
LOP
LSAST
LUT
MBOC
MCAR
MCC
MCF
MCS
MDDN
MEDLL
MEO
MGF
MJD

In-phase/quadrature phase

IERS reference meridian

Indian Regional Navigation Satellite System
IERS reference pole

Integrated three-carrier ambiguity resolution
International terrestrial reference frame
Intelligent transportation system
International Telecommunication Union
ITU, Radiocommunication (sector)
Intelligent vehicle highway system
Integrated water vapor

Julian date

Japanese geodetic system

Jet Propulsion Laboratory

Joint Program Office

Local-area augmentation system

Local-area differential

Local-area DGNSS

Least-squares ambiguity decorrelation adjustment

Location-based service

Low earth orbit (satellite)

Linear error probable

Linear feedback shift register
Left-handed circular polarization
Lunar laser ranging

Low-noise amplifier

Local oscillator

Loran GNSS interoperability channel
Line of position

Least-squares ambiguity search technique
Local user terminal

Multiplexed binary offset carrier
Multiple carrier ambiguity resolution
Master control center

Mission control facility

Master control station

Mission data dissemination network
Multipath estimating delay lock loop
Medium earth orbit (satellite)
Message generation facility
Modified Julian date

XXV
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MOPS Minimum operational performance standards
MRSE Mean radial spherical error

MS Monitoring station

MSAS MTSAT space-based augmentation system
MSF Mission support facility

MTSAT Multifunctional transport satellite

NAD-27 North American Datum 1927

NAGU Notice advisories to GLONASS users
NANU Notice advisories to NAVSTAR users

NAP NDS analysis package

NASA National Aeronautics and Space Administration

NAVCEN Navigation Center
NAVSTAR Navigation system with timing and ranging

NCO Numerically controlled oscillator

NDGPS Nationwide DGPS

NDS Nuclear detection system

NGA National Geospatial-Intelligence Agency

NGS National Geodetic Survey

NIMA National Imagery and Mapping Agency

NIS Navigation information service

NLES Navigation land earth station

NMEA National Marine Electronics Association

NNSS Navy Navigation Satellite System

NOAA National Oceanic and Atmospheric Administration
NSGU Navigation signal generator unit

NTRIP Networked transport of RTCM via Internet protocol
OoCS Operational control segment

OEM Original equipment manufacturer

OMEGA Optimal method for estimating GPS ambiguities
(0N Open service

OSPF Orbit determination and time synchronization processing facility
OoSu Ohio State University

OTF On-the-fly

OTR On-the-run

PC Personal computer

PCO Phase center offset

PCV Phase center variation

PDOP Position dilution of precision

PE Position error

PE-90 Parameter of the Earth 1990

PHM Passive hydrogen maser
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PL Protection level
PLL Phase lock loop
PNT Positioning, navigation, and timing
POR Pacific ocean region
PPP Precise point positioning; public-private partnership
PPS Precise positioning service
PPS-SM PPS-security module
PRARE Precise range and range rate equipment
PRC Pseudorange correction
PRN Pseudorandom noise
PRS Public regulated service
PSD Power spectral density
PSK Phase-shifted key
PTF Precise timing facility
PVS Position and velocity of the satellite
PVT Position, velocity, and time
PZ-90 Parametry Zemli 1990
(Parameter of the Earth 1990)
QASPR Qualcomm automatic satellite position reporting
QPSK Quadrature phase-shifted key
QZSS Quasi-Zenith Satellite System
RAFS Rubidium atomic frequency standard
RAIM Receiver autonomous integrity monitoring
RF Radio frequency
RHCP Right-handed circular polarization
RIMS Receiver integrity monitoring station
RINEX Receiver independent exchange (format)
RIS River information service
RMS Root mean square
RNP Required navigation performance
RNSS Radionavigation satellite service
RRC Range rate correction
RTCM Radio Technical Commission for Maritime (Services)
RTK Real-time kinematic
RX Receiver/receive
SA Selective availability
SAASM Selective ability anti-spoofing module
SAIF Submeter accuracy with integrity function
SAPOS Satellite positioning service
SAR Search and rescue

SARPS Standards and recommended practices
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SARSAT
SBAS
SCCF
SD
SDCM
SDDN
SDGPS
SEP
SGS-85
SGS-90
SIL
SINEX
SIS
SISA
SISE
SISMA
SISNeT
SLR
S/N
SNAS
SoLL
SOP
SPF
SPS
SSR
SU

N\Y%
TACAN
TAI

TCAR
TCS
TDMA
TDOP
TDRSS
TDT
TEC
TECU
THR
TLM
TOA

Abbreviations

SAR satellite-aided tracking
Space-based augmentation system
Spacecraft constellation control facility
Selective denial

System for differential correction and monitoring
Satellite data distribution network
Satellite DGPS

Spherical error probable

Soviet Geodetic System 1985

Soviet Geodetic System 1990

Safety integrity level

Software independent exchange (format)
Signal in space

SIS accuracy

SIS error

SIS monitoring accuracy

SIS over Internet

Satellite laser ranging

Signal-to-noise ratio

Satellite navigation augmentation system
Safety of life

Surface of position

Service products facility

Standard positioning service

Sum of squared residuals

Soviet Union

Space vehicle

Tactical air navigation

Temps atomique international
(International atomic time)
Three-carrier ambiguity resolution
Tracking control station

Time division multiple access

Time dilution of precision

Tracking and data relay satellite system
Terrestrial dynamic time

Total electron content

TEC units

Tolerable hazard rate

Telemetry word

Time of arrival
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TOW Time of week

TRF Terrestrial reference frame

TT Terrestrial time

TTA Time to alarm/alert

TT&C Telemetry, tracking and control (or command)
TTFF Time to first fix

TV Television

TVEC Total vertical electron content
X Transmitter/transmit

UDRE User differential range error
UERE User equivalent range error
ULS Uplink station

URE User range error

UsS United States (of America)
USA Unites States of America
USNO US Naval Observatory

USSR Union of Soviet Socialist Republics
UT Universal time

UTC Coordinated universal time
UTM Universal transverse Mercator
VBS Virtual base station

VDB VHF data broadcast

VDOP Vertical dilution of precision
VHF Very high frequency

VLBI Very long baseline interferometry
VPL Vertical protection level

VRS Virtual reference station

WAAS Wide-area augmentation system
WAD Wide-area differential

WARTK Wide-area real-time kinematic
WGS-84 World Geodetic System 1984
WMS Wide-area master station

WRS Wide-area reference station

XOR Exclusive-or



1 Introduction

1.1 The origins of surveying

Since the dawn of civilization, man has looked to the heavens with awe searching
for portentous signs. Some of these men became experts in deciphering the mystery
of the stars and developed rules for governing life based upon their placement. The
exact time to plant the crops was one of the events that was foretold by the early
priest astronomers who in essence were the world’s first surveyors. Today, it is
known that the alignment of such structures as the pyramids and Stonehenge was
accomplished by celestial observations and that the structures themselves were used
to measure the time of celestial events such as the vernal equinox.

Some of the first known surveyors were Egyptian surveyors who used distant
control points to replace property corners destroyed by the flooding Nile River.
Later, the Greeks and Romans surveyed their settlements. The Dutch surveyor Snell
van Royen was the first who measured the interior angles of a series of interconnect-
ing triangles in combination with baselines to determine the coordinates of points
long distances apart. Triangulations on a larger scale were conducted by the French
surveyors Picard and Cassini to determine a baseline extending from Dunkirk to
Collioure. The triangulation technique was subsequently used by surveyors as the
main means of determining accurate coordinates over continental distances.

The chain of technical developments from the early astronomical surveyors
to the present satellite geodesists reflects man’s desire to be able to master time
and space and to use science to foster society. The surveyor’s role in society has
remained unchanged from the earliest days; that is to determine land boundaries,
provide maps of his environment, and control the construction of public and private
works.

1.2 Development of global surveying techniques

The use of triangulation (later combined with trilateration and traversing) was lim-
ited by the line of sight. Surveyors climbed to mountain tops and developed spe-
cial survey towers (e.g., Bilby towers) to extend this line of sight usually by small
amounts. The series of triangles was generally oriented or fixed by astronomic
points where selected stars had been observed to determine the position of that
point on the surface of the earth. Since these astronomic positions could be in error
by hundreds of meters, each continent was virtually (positionally) isolated and their
interrelationship was imprecisely known.
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1.2.1 Optical global triangulation

Some of the first attempts to determine the interrelationship between the continents
were made using the occultation of certain stars by the moon. This method, known
as the lunar-distance method, was cumbersome and had only limited success in
the late 1600s. The launch of the first artificial satellite, i.e., the Russian Sputnik
satellite on October 4, 1957, had tremendously advanced the connection of the var-
ious geodetic world datums. In the beginning of the era of artificial satellites, an
optical method, based (in principle) on the stellar triangulation method developed
in Finland as early as 1946, was applied very successfully. The worldwide satel-
lite triangulation program, often called the BC-4 program (after the camera that
was used), for the first time determined the interrelationships of the major world
datums. This method involved photographing special reflective satellites against a
star background with a metric camera that was fitted with a specially manufactured
chopping shutter. The image that appeared on the photograph consisted of a se-
ries of dots depicting each star’s path and a series of dots depicting the satellite’s
path. The coordinates of selected dots were precisely measured using a photogram-
metric comparator, and the associated spatial directions from the observing site
to the satellite were then processed using an analytical photogrammetric model.
Photographing the same satellite from a neighboring site simultaneously and pro-
cessing the data in an analogous way yields another set of spatial directions. Each
pair of corresponding directions forms a plane containing the observing points and
the satellite. The intersection of at least two planes results in the spatial direction
between the observing sites. In the next step, these oriented directions were used
to construct a global network with the scale being derived from several terrestrial
traverses. An example is the European baseline running from Tromsg in Norway to
Catania on Sicily. The main problem in using this optical technique was that clear
sky was required simultaneously at a minimum of two observing sites separated by
some 4 000 km, and the equipment was massive and expensive. Thus, optical direc-
tion measurement was soon supplanted by the electromagnetic ranging technique
because of all-weather capability, greater accuracy, and lower cost of the newer
technique.

1.2.2 Electromagnetic global trilateration

First attempts to (positionally) connect the continents by electromagnetic tech-
niques was by the use of an electronic high-range navigation (HIRAN) system
developed during World War II to position aircraft. Beginning in the late 1940s,
HIRAN arcs of trilateration were measured between North America and Europe in
an attempt to determine the difference in their respective datums. A significant tech-
nological breakthrough occurred in 1957 after the launch of Sputnik when scientists
around the world (e.g., at the Johns Hopkins University Applied Physics Labora-
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tory) experienced that the Doppler shift in the signal broadcast by a satellite could
be used as an observable to determine the exact time of closest approach of the
satellite. This knowledge, together with the ability to compute satellite ephemerides
according to Kepler’s laws, led to the present capability of instantaneously deter-
mining precise position anywhere in the world.

1.2.3 Satellite-based positioning

Introduction

Satellite-based positioning is the determination of positions of observing sites on
land or at sea, in the air and in space by means of artificial satellites. Thus, be aware
not to misinterpret the frequently used shortened notation “satellite positioning”.

Operational satellite-based positioning systems (as discussed in this textbook)
assume that the satellite positions are known at every epoch.

The term global navigation satellite system (GNSS) covers throughout this text-
book each individual global satellite-based positioning system as well as the com-
bination or augmentation of these systems.

A historical review on the development of satellite-based positioning can be
found, e.g., in Guier and Weiffenbach (1997) or Ashkenazi (2006).

Principle of satellite-based positioning

Operational satellites primarily provide the user with the capability of determining
his position, expressed, for example, by latitude, longitude, and height. This task
is accomplished by the simple resection process using ranges or range differences
measured to satellites.

Imagine the satellites frozen in space at a given instant. The space vector @°
relative to the center of the earth (geocenter) of each satellite (Fig. 1.1) can be com-
puted from the ephemerides broadcast by the satellite by an algorithm presented
in Chap. 3. If the receiver on ground defined by its geocentric position vector @,
employed a clock that was set precisely to system time (Sect. 2.3), the geometric
distance or range o to each satellite could be accurately measured by recording
the run time required for the (coded) satellite signal to reach the receiver. Each
range defines a sphere (more precisely: surface of a sphere) with its center at the
satellite position. Hence, using this technique, ranges to only three satellites would
be needed since the intersection of three spheres yields the three unknowns (e.g.,
latitude, longitude, and height) which could be determined from the three range
equations

o=lle’ -l (1.1)

Modern receivers apply a slightly different technique. They typically use an inex-
pensive crystal clock which is set approximately to system time. Thus, the clock of
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satellite

receiver

geocenter

Fig. 1.1. Principle of satellite-based positioning

the receiver on ground is offset from true system time and, because of this offset,
the distance measured to the satellite differs from the geometric range. Therefore,
the measured quantities are called pseudoranges R since they represent the geomet-
ric range plus a range correction Ap resulting from the receiver clock error or clock
bias 6. A simple model for the pseudorange is

R=0o+Ao=0+co (1.2)

with ¢ being the speed of light.
Four simultaneously measured pseudoranges are needed to solve for the four
unknowns; namely the three components of position plus the clock bias.

Satellite-based systems

Early systems

The immediate predecessor of today’s modern positioning systems is the Navy
Navigation Satellite System (NNSS), also called Transit system. This system was
conceived in the late 1950s and developed in the 1960s by the US military, primar-
ily, to determine the coordinates (and time) of vessels at sea and for military appli-
cations on land. Civilian use of this satellite system was eventually authorized, and
the system became used worldwide both for navigation and surveying.

The system matured to six satellites in nearly circular polar low earth orbits
(LEO) at altitudes of about 1 100km. The satellites transmitted two carrier fre-
quencies (150 and 400 MHz). Onto the carriers, time marks and orbital information
were modulated.
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Receivers which could only track one of the two frequencies (denoted as single-
frequency receivers) achieved position accuracies in the 100 m range. For dual-
frequency receivers, the accuracy improved to about 20 m. Some of the early Transit
experiments by the former US Defense Mapping Agency (DMA) and the US Coast
& Geodetic Survey showed that accuracies of about one meter could be obtained by
occupying a point for several days (or even weeks) or reducing the number of obser-
vations using the postprocessed precise ephemerides of the satellites. Later, groups
of Doppler receivers in translocation mode (i.e., simultaneous observations) were
used to determine the relative coordinates of points to submeter accuracy using the
broadcast orbital information which are less accurate than the precise ephemerides.
This system employed essentially the same Doppler observable used to track the
Sputnik satellite; however, the orbits of the Transit satellites were precisely deter-
mined by tracking them at widely spaced fixed reference sites. The actual obser-
vation was the number of Doppler cycles (i.e., counts) between precise 2-minute
timing marks from the onboard clock.

More details on Transit can be found in, e.g., Hofmann-Wellenhof et al. (2003:
pp- 169-172). Note, however, that Transit is no longer operational since the end of
1996.

The Russian Tsikada (also written Cicada) system transmits the same two car-
rier frequencies as Transit and is similar to it with respect to the achievable accu-
racies. Ten LEO spacecraft were deployed in two complementary constellations, a
military and a civilian network. The older (i.e., military) constellation consists of
six satellites, where the first satellite was launched in 1974. The later (i.e., civil-
ian) constellation has four satellites. Contrary to Transit, the Tsikada system is still
operational.

The early systems had two major shortcomings. The main problem were the
large time gaps between two satellite passes. In the case of early Transit, for ex-
ample, nominally a satellite passed overhead every 90 minutes and users had to
interpolate their position between “fixes” or passes. The second problem was the
relatively low navigation accuracy. Particularly, the height determination was poor.

Present and future systems

The navigation system with timing and ranging (NAVSTAR) Global Positioning
System (GPS) was developed by the US military to overcome the shortcomings of
the early systems. In contrast to these systems, GPS answers the questions “What
time, what position, and what velocity is it?” quickly, accurately, and inexpensively
anywhere on the globe at any time. More details on GPS are given in Chap. 9.

The Global Navigation Satellite System (GLONASS) is the Russian counter-
part to GPS and is operated by the Russian military. GLONASS differs from GPS
in terms of the control segment, the space segment, and the signal structure. Details
are given in Chap. 10.
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Galileo is the European contribution to the future GNSS and will be discussed
in detail in Chap. 11.

A Chinese system called Compass, which is the evolution of the first-generation
regional system Beidou, is presently under development. Details on the system are
provided in Sect. 12.1.2.

As mentioned, GNSS implies several existing systems like GPS, GLONASS,
or Galileo. In addition, these systems are supplemented by space-based augmen-
tation systems (SBAS) or ground-based augmentation systems (GBAS). Examples
of SBAS are the US wide-area augmentation system (WAAS), the European geo-
stationary navigation overlay service (EGNOS), or the Japanese multifunctional
transport satellite (MTSAT) space-based augmentation system (MSAS). These sys-
tems augment the existing medium earth orbit (MEO) satellite constellations with
geostationary (GEO) or geosynchronous satellites. For more details, the reader is
referred to Sect. 12.4.

GNSS segments

Space segment

In order to provide a continuous global positioning capability, a constellation with
a sufficient number of satellites must be developed for each GNSS to ensure that
(at least) four satellites are simultaneously electronically visible at every site.

The selection of the satellite constellation has to follow various optimization
routines. The design criteria are, without being exhaustive, the user position ac-
curacy, the satellite availability, service coverage, and the satellite geometry. Fur-
thermore, the size and weight of the satellites have to be taken into account, which
are interrelated with the launch vehicle constraints and the costs of deployment,
maintenance, and replenishment. The satellite orbit defines the degree of perturbing
effects, which influence the maintenance maneuvers. With respect to the altitude,
a distinction is made between LEO, MEO, and GEO satellites. Also, the satellite
orbit influences the selection of the transmitted power. For MEO satellites for ex-
ample, the effective earthward transmitted power is in the range of 25 watt. The
transmission loss, however, attenuates the signal power to some 1076 watt. An-
other design parameter is the eventuality of a satellite failure, which results in a
diminished performance or even requires a reconstellation with new or spare satel-
lites.

The GNSS satellites, essentially, provide a platform for atomic clocks, radio
transceivers, computers, and various auxiliary equipment used to operate the sys-
tem. The signals of each satellite allow the user to measure the pseudorange R to
the satellite, and each satellite broadcasts a message which allows the user to de-
termine the spatial position @° of the satellite for arbitrary instants. Given these
capabilities, users are able to determine their position @, on or above the earth by
resection. The auxiliary equipment of each satellite, among others, consists of solar
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panels for power supply and a propulsion system for orbit adjustments and stability
control.

The satellites have various systems of identification. The launch sequence num-
ber, the orbital position number, the system specific name, and the international
designation are mentioned to name a few.

Control segment
The control segment (also referred to as ground segment) is responsible for steer-
ing the whole system. The task includes the deployment and maintenance of the
system, tracking of the satellites for the determination and prediction of orbital and
clock parameters, monitoring of auxiliary data (e.g., ionosphere parameters), and
upload of the data message to the satellites.

The control segment is also responsible for a possible encryption of data and
the protection of services against unauthorized users.

Generally, the control segment comprises a master control station coordinating
all activities, monitor stations forming the tracking network, and ground antennas
being the communication link to the satellites.

User segment
The user segment can be classified into user categories, receiver types, and various
information services.

User categories are subdivided into military and civilian users as well as autho-
rized and unauthorized users. Civilian and unauthorized users do not have access
to all signals or services of the GNSS.

A diversity of receiver types is on the market today. One characterization is
based on the type of observables, i.e., the kind of pseudoranges. Another criterion
is the ability to track one, two, or even more frequencies. Finally, one has to distin-
guish between receivers operating for one or more specific GNSS. An overview on
receiver features is provided in Sect. 13.4.1.

Several governmental and private information services have been established to
provide GNSS status information and data to the users. Generally, the information
contains constellation status reports, scheduled outages, and orbital data. The latter
are provided in the form of an almanac suitable for making satellite visibility pre-
dictions, and as precise ephemerides suitable for making the most precise position-
ing. Out of the variety of Internet sources only the International GNSS (formerly
GPS) Service for Geodynamics (IGS) located at the US Jet Propulsion Laboratory
(JPL) is mentioned here (http://igscb.jpl.nasa.gov).
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1.3 Positioning and navigating with satellites

1.3.1 Position determination

Four simultaneously measured pseudoranges are needed to solve for the four un-
knowns at any time epoch; these are the three components of position plus the clock
bias. Geometrically, the solution is accomplished by a sphere being tangent to the
four spheres defined by the pseudoranges. The center of this sphere corresponds to
the unknown position and its radius equals the range correction caused by the re-
ceiver clock error. In the two-dimensional case, the number of unknowns reduces to
three and, thus, only three satellites are needed. This scenario is shown in Fig. 1.2
as adapted from Hofmann-Wellenhof et al. (2003: p. 37).

It is worth noting that the range error Ap could be eliminated in advance by
differencing the pseudoranges measured from one site to two satellites or to two
different positions of one satellite. In the second case, the resulting range difference
or delta range corresponds to the observable as used in the Transit system. In both
cases, the delta range defines a hyperboloid (or a hyperbola in the two-dimensional
case) with its foci placed at the two satellites or the two different satellite posi-
tions for the geometric location of the receiver. Thus, pseudorange positioning by
means of between-satellites differenced pseudoranges is also denoted hyperbolic
positioning.

Fig. 1.2. Two-dimensional pseudorange positioning
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Differencing the pseudoranges measured at two sites (forming a baseline) to the
satellite reduces or eliminates systematic errors in the satellite position and satellite
clock biases. This (interferometric) approach has become fundamental for satellite-
based surveying.

Considering the fundamental equation (1.1), one can conclude that the accuracy
of the position determined using a single receiver is essentially affected by the
following factors:

e accuracy of each satellite position,
e accuracy of pseudorange measurement,

e geometry.

As mentioned before, systematic errors or biases in the pseudoranges can be
reduced or eliminated by differencing the measured pseudoranges either between
satellites or between sites. However, no mode of differencing can overcome poor
geometry.

A measure of satellite geometry with respect to the observing site is a factor
known as geometric dilution of precision (GDOP). Assuming four satellites, in a
geometric approach this factor is inversely proportional to the volume of a tetrahe-
dron. This body is formed by points obtained from the intersection of a unit sphere
with the vectors pointing from the observing site to the satellites. More details and
an analytical approach on this subject are provided in Sect. 7.3.4.

1.3.2 Velocity determination

The determination of the instantaneous velocity of a moving vehicle is another goal
of navigation. This can be achieved by using the Doppler principle of radio signals.
Because of the relative motion of the satellites with respect to a moving vehicle,
the frequency of a signal broadcast by the satellites is shifted when received at the
vehicle. This measurable Doppler shift is proportional to the relative radial velocity
or range rate.

Analytically, the Doppler observable D can be expressed by differentiating the
pseudorange equation (1.2) with respect to time

D=R=¢+cé, (1.3)

where the time derivatives are indicated by a dot. The term ¢ considers the time
derivation of the clock error which translates into a frequency bias. The range rate
o or radial velocity is obtained by differentiating (1.1) and is given by

@=(QQ%Q’)-<@S—@,>=@0-A@ (1.4)
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satellite receiver

Q >
0,

Fig. 1.3. Geometrical interpretation of a range rate

with @, being the unit vector between the satellite and the receiver site and AQ is
the relative velocity vector describing the relative velocity between satellite and
observing site.

Geometrically, Eq. (1.4) represents the projection of the relative velocity vector
onto the line of sight, cf. Fig. 1.3.

If in Eq. (1.4), apart from position and velocity vector of the satellite, the posi-
tion of the observing site is known, the velocity vector of the moving vehicle is the
only remaining unknown and can thus be deduced from the Doppler observable. A
minimum of four Doppler observables is required to solve for the three components
of the vehicle’s velocity vector and the frequency bias.

For the sake of completeness, also the inverse case is considered here. If the
relative velocity vector A@ is known, then Eq. (1.4) enables the computation of
the direction vector @,. In the two-dimensional case, this vector defines a straight
line as line of position (LOP) for the observing site. In the three-dimensional case,
the corresponding surface of position (SOP) is a circular cone with the satellite as
apex and its axis coinciding with the relative velocity vector (Hofmann-Wellenhof
et al. 2003: p. 37). The aperture angle is given by a = 2 arccos(¢ / [|AQ]]).

1.3.3 Attitude determination

Attitude is defined as the orientation of a specific body frame attached to a land
vehicle, ship, or aircraft with respect to a reference frame which is usually a local-
level frame represented by north-, east-, and up-axis.

The parameters used to define three-dimensional attitude are r, p, y, the angles
for roll, pitch, and yaw (or heading). In the case of an aircraft, the roll angle mea-
sures the rotation of the aircraft about the fuselage axis, the pitch angle measures
the rotation about the wing axis, and the yaw angle measures the rotation about the
vertical axis (Graas and Braasch 1992). Similar reference frames can be developed
for other vehicles.
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Traditionally, attitude parameters are derived from inertial navigation systems
or other electronic devices. With the advent of low-cost high-performance sensors,
multiantenna systems which integrate three or more GNSS antennas in a proper
configuration provide an alternative and cost-effective means to obtain reliable and
accurate attitude information.

For more details on attitude determination, the reader is referred to Sect. 13.1.4.

1.3.4 Terminology

Code pseudoranges versus phase pseudoranges

Typically, observables for satellite-based positioning are pseudoranges as derived
from run-time observations of the coded satellite signal or from measurements of
the phase of the carrier.

Generally speaking, the accuracy of code ranges is at the meter level, whereas
the accuracy of carrier phases is in the millimeter range. The accuracy of code
ranges can be improved, however, by the specific receiver technology or by smooth-
ing techniques.

The disadvantage of phase ranges is the fact that they are ambiguous by an
integer number of full wavelengths, whereas the code ranges are virtually unam-
biguous. The determination of the phase ambiguities is often a critical issue in
high-accuracy satellite-based positioning.

Absolute versus relative positioning

The coordinates of a single point are determined by point positioning when us-
ing a single receiver which measures pseudoranges to four or more satellites. The
terms “point positioning”, “single-point positioning”, and the term “absolute point
positioning” are synonymously used. The term “absolute” reflects the opposite of
“relative”.

Instead of “relative positioning” the term “differential positioning” is often
used. Note, however, that the two methods are (at least theoretically) different.
Differential positioning is rather an improved single-point positioning technique
and is based on applying (predicted) corrections to pseudoranges measured at an
unknown site. The technique provides instantaneous solutions (usually denoted as
real-time solutions) where improved accuracies with respect to a reference station
are achieved.

Relative positioning is possible if (as in the case of differential positioning) two
receivers are used and (code or carrier phase) measurements, to the same satellites,
are simultaneously made at two sites. The measurements taken at both sites are
(in contrast to differential positioning) directly combined. This direct combination
further improves the position accuracy but prevents instantaneous solutions in the
strict sense. Normally, the coordinates of one site are known and the position of the
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other site is to be determined relatively to the known site (i.e., the vector between
the two sites is determined). In general, the receiver at the known site is stationary
while observing.

In the past, point positioning was associated with navigation and relative posi-
tioning with surveying. Also, the term “relative” was used for carrier phase obser-
vations, whereas the term “differential” was used for code range observations. In
practice, however, there is no universal agreement on these terms.

Static versus kinematic positioning
Static denotes a stationary observation location, while kinematic implies motion. A
temporary loss of signal lock in static mode is not as critical as in kinematic mode.
Attention should be paid to the difference between the terms “kinematic” and
“dynamic”. The term “kinematic” describes the pure geometry of a motion, whereas
“dynamic” considers the forces causing the motion. The following example may il-
lustrate the difference. The type of modeling the satellite orbit is called dynamic.
The positioning of a moving vehicle such as a plane or boat based on known satel-
lite positions is regarded as kinematic procedure.

Real-time processing versus postprocessing

For real-time GNSS, the results must be available in the field immediately. The re-
sults are denoted as “instantaneous” if the observables of a single epoch are used
for the position computation and the processing time is negligible. The concept of
modern operational satellite techniques aims at instantaneous navigation of moving
vehicles (i.e., cars, ships, aircraft) by unsmoothed code pseudoranges. A different
and less stringent definition is “quasi (or near) real-time” which includes comput-
ing results with a slight delay. Today, radio data links allow the combination of
measurements from different sites in (near) real time.

Postprocessing refers to applications when data are processed after the fact.

Surveying versus navigation

The fields of surveying and navigation are closely related. The goal of surveying,
however, is mainly positioning, whereas navigation includes the determination of
position, velocity, and attitude of moving objects. In the past, surveying was char-
acterized by high positioning accuracies, static observations, and postprocessing
procedures. In contrast, navigation requires lower accuracies but (near) real-time
processing of kinematic observations. The differences between surveying and nav-
igating modes have continued to diminish.
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2.1 Introduction

The basic equation which relates the range o with the instantaneous position vector
o’ of a satellite and the position vector @, of the observing site reads

o=l -oll. (2.1)

In Eq. (2.1), both vectors must be expressed in a uniform coordinate system. The
definition of a three-dimensional Cartesian system requires a convention for the
orientation of the axes and for the location of the origin.

For global applications such as satellite geodesy, equatorial coordinate systems
are appropriate. According to Fig. 2.1, a space-fixed or celestial system X? and
an earth-fixed or terrestrial system X; must be distinguished, where i = 1, 2, 3.
The earth’s rotation vector m, serves as X3-axis in both cases. The X({ -axis for the
space-fixed system points towards the vernal equinox and is, thus, the intersection
line between the equatorial and the ecliptic plane. The X -axis of the earth-fixed
system is defined by the intersection line of the equatorial plane with the plane
represented by the Greenwich meridian. The angle ®g between the two systems is
called Greenwich sidereal time. The X,-axis (in analogy to Xg not shown Fig. 2.1)
is orthogonal to both the X-axis and the X3-axis and completes a right-handed
coordinate frame. A nonrotating coordinate system whose origin is located at the
barycenter is at rest with respect to the solar system. It is, therefore, an inertial
system which conforms to Newtonian mechanics. In a geocentric system, however,
accelerations are present because the earth is orbiting the sun. Thus, in such a sys-
tem the laws of general relativity must be taken into account. But, since the main
relativistic effect is caused by the gravity field of the earth itself, the geocentric
system is better suited for the description of the motion of a satellite close to the
earth. Note that the axes of a geocentric coordinate system remain parallel because
the motion of the earth around the sun is described by revolution without rotation.

The earth’s rotation vector m, oscillates due to several reasons. The basic dif-
ferential equations describing the oscillations follow from classical mechanics and
are given by

dN
= 2.2
7 (2.2)
and
M=§+mexN, (2.3)

ot
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Fig. 2.1. Equatorial coordinate systems

where M denotes a torque vector, N is the angular momentum vector of the earth,
and 7 indicates time (Moritz and Mueller 1988: Eqgs. (2-54) and (2-59)). The symbol
“Xx” in (2.3) indicates a vector (or cross) product. The torque M originates mainly
from the gravitational forces of sun and moon; therefore it is closely related to the
tidal potential. Equation (2.2) is valid in a (quasi-) inertial system such as X? and
Eq. (2.3) applies for the rotating system X;. The partial derivative expresses the
temporal change of N with respect to the earth-fixed system, and the vector product
considers the rotation of this system with respect to the inertial system.

The earth’s rotation vector o, is related to the angular momentum vector N by
the inertia tensor C as

N=Cow,. 2.4)
Introducing for , its unit vector ® and its norm w, = ||®,||, the relation
0, = W, W (2.5)

can be formed.

The differential equations (2.2) and (2.3) can be separated into two parts. The
oscillations of m, i.e., the variations of the X 3-axis, are considered in the subsequent
section. The oscillations of the norm w, cause variations in the speed of rotation
which are treated in the section on time systems.

Considering only the homogeneous part (i.e., M = 0) of Egs. (2.2) and (2.3)
leads to free oscillations. The inhomogeneous solution gives the forced oscillation.
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In both cases, the oscillations can be related to the inertial or to the terrestrial sys-
tem. A further criterion for the solution concerns the inertia tensor. For a rigid earth
and neglecting internal mass shifts, this tensor is constant; this is not the case for a
deformable earth.

2.2 Coordinate systems

2.2.1 Definitions

Oscillations of axes

The oscillation of @ with respect to the inertial space is called nutation. For the
sake of convenience, the effect is partitioned into the secular precession and the
periodic nutation. The oscillation with respect to the terrestrial system is named
polar motion. A simplified representation of polar motion is given in Fig. 2.2. The
image of a mean position of @ is denoted by P in this polar perspective. The free
oscillation results in a motion of the rotation axis along a circular cone, with its
mean position as axis, and an aperture angle of about 0.4 arcseconds. On the earth,
this motion is represented by a 6 m radius circle around P. The image of an instan-
taneous position of the free oscillating earth’s rotation axis is denoted by Ry. The
period of the free motion amounts to about 430 days and is known as the Chandler
period. The forced motion can also be described by a cone. In Fig. 2.2, this cone is
mapped by the circle around the free position Ry. The radius of this circle is related
to the tidal deformation and amounts to approximately 0.5 m. The nearly diurnal
period of the forced motion corresponds to the tesseral part of the tidal potential
of second degree. The respective motions of the angular momentum axis, which is
within one milliarcsecond of the rotation axis, are very similar. The free motion of
the angular momentum axis deserves special attention because the forced motion

one day

Fig. 2.2. Polar motion of the earth’s rotation axis
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can be removed by modeling the tidal attractions. The free polar motion is long-
periodic and the free position in space is fixed since for M = 0 the integration of
Eq. (2.2) yields N = constant. By the way, this result implies the law of conserva-
tion of angular momentum as long as no external forces are applied. Because of the
above mentioned properties, the angular momentum axis is appropriate to serve as
a reference axis and the scientific community has named its free position in space
celestial ephemeris pole (CEP). A candidate for serving as reference axis in the
terrestrial system is the mean position of the rotation axis denoted by P (Fig. 2.2).
This position is called conventional international origin (CIO).

Conventional celestial reference system

By convention, the X%—axis is identical to the position of the angular momentum
axis at a standard epoch denoted by J2000.0 (Sect. 2.3.3). The X?—axis points to the
associated vernal equinox. This equinox is defined, for example, by a set of fun-
damental stars, cf. European Space Agency (1997) or Wielen et al. (1999). Since
this system is defined conventionally and the practical realization does not nec-
essarily coincide with the theoretical system, it is called (conventional) celestial
reference frame (CRF). Sometimes the term “quasi-inertial” is added to point out
that a geocentric system is not rigorously inertial because of the accelerated motion
of the earth around the sun. One example of such a celestial reference frame is that
established by the International Earth Rotation Service (IERS) (McCarthy and Pe-
tit 2004). This frame is called ICRF where the first letter indicates the IERS origin.
The ICREF is kinematically defined by a set of precise coordinates of extragalactic
radio sources, mostly quasars and galactic nuclei.

Conventional terrestrial reference system

Again by convention, the X3-axis is identical to the mean position of the earth’s
rotation axis as defined by the CIO. The X -axis is associated with the mean Green-
wich meridian. The realization of this system is named the (conventional) terrestrial
reference frame (TRF) and is defined by a set of terrestrial control stations serving
as reference points. Most of the reference stations are equipped with very long
baseline interferometry (VLBI), lunar laser ranging (LLR), satellite laser ranging
(SLR), or GNSS capabilities.

An example for a terrestrial reference frame is the international terrestrial refer-
ence frame (ITRF) produced by the IERS (McCarthy and Petit 2004). The X3-axis
is defined by the IERS reference pole (IRP) and the Xj-axis lies in the IERS refer-
ence meridian (IRM). The ITRF is realized by a number of terrestrial sites where
temporal effects (plate tectonics, tidal effects) are also taken into account. Thus,
ITREF is regularly updated and the acronym is supplemented by digits to mark the
last year whose data were used in the formation of the frame. Since October 2006,
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the ITRF2005 (http://itrf.ensg.ign.fr) has been the operative version.

Another terrestrial reference frame is the World Geodetic System 1984 (WGS-
84), which is applied for GPS. After some modifications, the present version of
WGS-84 is almost identical with the ITRF2005. A detailed description of WGS-84
is given in Sect. 9.2.1.

The coordinates in GLONASS are based on the Parameter of the Earth 1990
(PE-90) frame. Details of the PE-90 frame are given in Sect. 10.2.1 or Feairheller
and Clark (2006: p. 605).

Also, the Galileo terrestrial reference frame (GTRF) is theoretically identical
with ITRF2005. For more details on GTREF, the reader is referred to Sect. 11.2.1.

2.2.2 Transformation between celestial and terrestrial frames

General remarks

Following the resolutions of the International Astronomical Union (IAU) adopted
in 2000, the “new” concept of the transformation has to consider relativistic ef-
fects since the celestial reference system (CRS) is split into the barycentric celestial
reference system (BCRS) and the so far considered geocentric celestial reference
system (GCRS). In the following section, however, the “old” concept is retained to
keep the mathematical apparatus of the transformation as simple as possible. The
reader interested in more details is referred to Capitaine et al. (2002).

The transformation between the (geocentric) celestial reference frame and the
terrestrial reference frame is performed by means of rotations. For an arbitrary
vector X, the transformation is given by

xtrr = RYRSRYR"x g, (2.6)
where

RY ... rotation matrix for polar motion,

RS ... rotation matrix for Greenwich sidereal time,

RV ... rotation matrix for nutation,

RP ... rotation matrix for precession.

The CRF, defined at the standard epoch J2000.0, is transformed into the instan-
taneous or true system at observation epoch by applying the corrections due to
precession and nutation. The Xg—axis of the true CRF represents the free position
of the angular momentum axis and, thus, points to the CEP at observation epoch.
Rotating this system about the Xg—axis and through the sidereal time by the matrix
RS does not change the position of the CEP. Finally, the CEP is rotated into the
CIO by R™ which completes the transformation.

The rotation matrices in Eq. (2.6) are composed of the elementary matrices
R;{a} describing a rotation of the coordinate system about the X;-axis and through
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the angle @. The rotation matrices are given by

1 0 0
Ri{a} = 0 cos sina |,
0 —sina cosa |
cos @ 0 —sina |
Ry{a} = 0 1 0 , 2.7
sin 0 cosa |
cos sin 0
Rs{a} =| —sina cosa
0 0 1

Note that these matrices are consistent with right-handed coordinate systems. The
rotation angle « has a positive sign for clockwise rotation as viewed from the origin
to the positive X;-axis.

Precession

A graphic representation of precession is given in Fig. 2.3. The position of the
mean vernal equinox at the standard epoch #; is denoted by E( and the position at
the observation epoch 7 is denoted by E. The precession matrix

R” = R3{-z) Ro{?) R3{-¢) (2.8)

is composed of three successive rotation matrices, where z, ¢, { are the precession
parameters. Explicitly, performing the multiplication,

[ coszcost®cos{ —coszcosdsind —coszsind |
—sinzsin{ —sinzcos{
RP =| sinzcos®cos{ —sinzcos®sing —sinzsind 2.9)
+coszsin{ +coszcos{
sin} cos —sindsin{ cos

is obtained. The precession parameters are computed from the time series

¢ =2306.2181" T +0.30188” T2 + 0.017998” T3,
7z =2306.2181” T + 1.09468” T2 + 0.018203" T3, (2.10)
9 =2004.3109” T — 0.42665” T? — 0.041833" T3

as given in Seidelmann (1992: Table 3.211.1). The parameter T represents the time-
span expressed in Julian centuries of 36 525 mean solar days between the standard
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mean equator ()

Fig. 2.3. Precession

epoch J2000.0 and the epoch of observation. For a numerical example, consider
an observation epoch J1990.5 which corresponds to 7 = —0.095. Substituting T
into Eq. (2.10), the numerical values = —219.0880”, z = —219.0809”, and ¢ =
—190.4134" are obtained. The substitution of these values into Eq. (2.9) gives the
following numerical precession matrix:

0.999997318  0.002124301  0.000923149
R” =| -0.002124301  0.999997744 —0.000000981 | .
—-0.000923149 -0.000000981  0.999999574

Nutation
A graphic representation of nutation is given in Fig. 2.4. The mean vernal equinox
at the observation epoch is denoted by E and the true equinox by E;. The nutation
matrix RV is composed of three successive rotation matrices where both the nuta-
tion in longitude Ay and the nutation in obliquity Ae can be treated as differential
quantities:

RY = Ri{—(g + Ae)} R3{-Ay} Ry (&} . (2.11)
Explicitly,
1 —Aycose —Aysineg
RY =| Aycose 1 -Ae (2.12)
Ay sine Ae 1

is obtained. The mean obliquity of the ecliptic £ has been determined (Seidel-
mann 1992: p. 114) as

£ =23°26/21.448" —46.8150” T —0.00059” T2 +0.001813” T3, (2.13)
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mean equator

true equator

Fig. 2.4. Nutation

where T is the same time factor as in Eq. (2.10). The nutation parameters Ay and
Ag are computed from the harmonic series:

106 5
Ay = Za,-sin Z ejEj|=-172" sinQ,, +...,
i=1 j=1
(2.14)
64 5
Ae :Zbicos Z ejEil= 92" cosQ, +...,
i=1 =1

where the amplitudes a;, b; as well as the integer coeflicients e; are tabulated, for
example, in Seidelmann (1992: Table 3.222.1). The five fundamental arguments E
describe mean motions in the sun-earth-moon system. The mean longitude €, of
moon’s ascending node is one of the arguments. The moon’s node retrogrades with
a period of about 18.6 years and this period appears in the principal terms of the
nutation series.

Sidereal time
The rotation matrix for sidereal time RS is

R® = R3{0}. (2.15)
The computation of the apparent Greenwich sidereal time ®¢ is shown in the sec-

tion on time systems (Sect. 2.3.2).

Polar motion
The previous computations yield the instantaneous CEP. The CEP must still be ro-
tated into the CIO. This is achieved by means of the pole coordinates xp, yp, which
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Fig. 2.5. Pole coordinates

define the position of the CEP with respect to the CIO (Fig. 2.5). The pole coordi-
nates are determined by the IERS and are published on its Web site www.iers.org.
The rotation matrix for polar motion R is given by

1 0 Xp
RY = Ro{—xp}Ri{-yp}=| 0 L —=yp |. (2.16)
-xp yp 1

The rotation matrices RS and R are often combined to a single matrix R¥ for
earth rotation:

RR = RMRS . (2.17)

In the case of operational satellite-based positioning systems, the space-fixed coor-
dinate system is already related to the CEP; hence, RX is the only rotation matrix
which must be applied for the transformation into the terrestrial system. For most
practical purposes, the effect of polar motion is negligible.

2.2.3 Transformation between terrestrial frames

The transformation between the various (static) terrestrial reference frames (i.e., da-
tum transformation) is generally performed by three-dimensional similarity trans-
formations. This conformal transformation contains seven parameters and is given
by

Xt1RF, = ¢+t RXTRE, , (2.18)

where Xtrp, denotes the three-dimensional position vector of a site in one and
XtrF, denotes the corresponding vector represented in another terrestrial coordi-
nate reference frame. The vector ¢ = [c¢1, ¢2, c¢3] is the translation vector between
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the two coordinate frames, u is a scale factor, and R is an orthonormal matrix. The
latter is composed of three successive rotations «; about the coordinate frame axes.

If the respective terrestrial reference frames are kinematically defined (e.g., the
various ITRF), Eq. (2.18) must be expanded to a fourteen-parameter transformation
by taking into account time derivatives (i.e., rates) of the seven aforementioned pa-
rameters. Details on this kind of datum transformation as well as numerical results
for the transformation parameters from ITRF2000 to past ITRF are provided in
McCarthy and Petit (2004: Sect. 4.1 and Table 4.1).

A vector X in the terrestrial reference frame can be represented by Cartesian
coordinates X, Y, Z as well as by ellipsoidal coordinates ¢, A, h. The rectangular
coordinates are often called earth-centered, earth-fixed (ECEF) coordinates. De-
tails on the transformation of Cartesian and ellipsoidal coordinates are provided in
Sect. 8.2.

2.3 Time systems

2.3.1 Definitions

Several time systems are in current use. They are based on various periodic pro-
cesses such as earth rotation and are listed in Table 2.1.

Solar and sidereal times

A measure of earth rotation is the hour angle which is the angle between the merid-
ian of a celestial body and a reference meridian (preferably the Greenwich merid-
ian). Universal time (UT) is defined by the Greenwich hour angle augmented by
12 hours of a fictitious sun uniformly orbiting in the equatorial plane. Sidereal time
is defined by the hour angle of the vernal equinox. Taking the mean equinox as
the reference leads to mean sidereal time and using the true equinox as a reference

Table 2.1. Time systems

Periodic process Representative time systems

Earth rotation Universal time (UT)
Greenwich sidereal time (®g)

Earth revolution Terrestrial dynamic time (TDT)

Barycentric dynamic time (BDT)
Atomic oscillations International atomic time (TAI)
Coordinated UT (UTC)
Reference time in satellite-based positioning systems
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yields true or apparent sidereal time. Both, solar and sidereal time are not uniform
since the angular velocity (i.e., the earth’s rotation rate) w, is not constant. The fluc-
tuations are partly due to changes in the polar moment of inertia exerted by tidal
deformation as well as other mass transports. Another factor is due to the oscilla-
tions of the earth’s rotation axis itself. In this case, the universal time corrected for
polar motion is denoted by UT1.

Dynamic times

The time systems derived from planetary motions in the solar system are called
dynamic times. The barycentric dynamic time (BDT) is an inertial time system in
the Newtonian sense and provides the time variable in the equations of motion. The
quasi-inertial terrestrial dynamic time (TDT) was formerly called ephemeris time
and serves for the integration of the differential equations for the orbital motion
of satellites around the earth. In 1991, the IAU introduced the term terrestrial time
(TT) to replace TDT. Furthermore, the terminology of coordinate times according
to the theory of general relativity was introduced. More details on this subject are
given in Seidelmann and Fukushima (1992).

Atomic times

In practice, the dynamic time system is achieved by the use of atomic time scales.
The coordinated UT (UTC) system is a compromise. The unit of the system is the
atomic second, but to keep the system close to UT1 and approximate civil time,
integer leap seconds are inserted at distinct epochs. Thus, UTC is not a continuous
time scale.

2.3.2 Conversions

The times derived from earth rotation (i.e., UT1, the mean solar time corrected for
polar motion, and ®q, the apparent sidereal time) are related by the formula

®p = 1.0027379093 UT1 + ¢y + Ay cos &. (2.19)

The first term on the right side of Eq. (2.19) accounts for the different scales of so-
lar and sidereal time. The quantity ¢ represents the actual sidereal time at Green-
wich midnight (i.e., 0" UT). The third term describes the projection of Ay onto the
equator and considers the effect of nutation. The mean sidereal time follows from
Eq. (2.19) by neglecting the nutation term.

A time series has been determined for J as

Jo =24 110.548 415 + 8640 184.812866° T
(2.20)
+0.0931045 T3 - 6.25 - 107° T,
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where Ty represents the timespan expressed in Julian centuries of 36525 mean
solar days between the standard epoch J2000.0 and the day of observation at 0" UT
(Seidelmann 1992: p. 50).

The time UT1 is related to UTC by the quantity dUT1 which is time-dependent
and is reported by the IERS:

UT! = UTC + dUTI. 2.21)

When the absolute value of dUT1 becomes larger than 0.95, a leap second is in-
serted into the UTC system.

For the conversion between the atomic and the dynamic time system, the fol-
lowing relations are defined:

TAI = TDT - 32.184% constant offset,
TAI = UTC + 1.000% n variable offset as leap seconds are (2.22)
substituted.

The actual integer n is reported by the IERS. In January 2007, for example, the
integer value was n = 33.

2.3.3 Calendar

Definitions

The Julian date (JD) defines the number of mean solar days elapsed since the epoch
January 1.59, 4713 before Christ.

The modified Julian date (MJD) is obtained by subtracting 2400 000.5 days
from JD. This convention saves digits and MJD commences at civil midnight in-
stead of noon. For the sake of completeness, Table 2.2 with the Julian date for
two standard epochs is given. This table enables, for example, the calculation of
the parameter 7" for the GPS standard epoch. Subtracting the respective Julian
dates and dividing by 36 525 (i.e., the number of days in a Julian century) yields
T =-0.199 876 7967.

Table 2.2. Standard epochs

Civil date Julian date  Explanation

January 1.59,2000 2451545.0 Current standard epoch (J2000.0)
January 6.09, 1980 2444244.5 GPS standard epoch
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Date conversions

The relations for date conversions are taken from Montenbruck (1984) and are
slightly modified so that they are only valid for an epoch between March 1900
and February 2100.

Let the civil date be expressed by integer values for the year Y, month M, day
D, and a real value for the time in hours UT. Then

JD =1INT[365.25 y] + INT[30.6001 (i + 1)]

(2.23)
+D+UT/24 + 1720981.5

is the conversion into Julian date, where INT denotes the integer part of a real
number and y, m are given by

y=Y-1 and m=M+12 if M<2,
y=Y and m=M if M>2.

The inverse transformation, that is, the conversion from Julian date to civil date,
is carried out stepwise. First, the auxiliary numbers

a=INT[JD + 0.5],

b=a+ 1537,

¢ =INT[(b - 122.1)/365.25],
d =1INT[365.25 ],

e =INT[(b — d)/30.6001]

are calculated. Afterwards, the civil date parameters are obtained from the relations

D =b—d—1INT[30.6001 e] + FRAC[JD + 0.5],
M=e—-1-12INTl[e/14], (2.24)
Y =c—-4715 - INT[(7 + M)/10],

where FRAC denotes the fractional part of a number. As a by-product of date con-
version, the day of week can be evaluated by the formula

N = modulo{INT[JD + 0.5], 7}, (2.25)

where N = 0 denotes Monday, N = 1 means Tuesday, and so on.
A further task is the calculation of the number of weeks since a reference epoch:

WEEK = INT[(JDObservation epoch — JDreference epoch)/ 7]. (226)

The formulas given here can be used to prove the different dates in Table 2.2 or to
verify the fact that the epoch J2000.0 corresponds to Saturday in the 1042nd GPS
week.
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3.1 Introduction

The applications of operational satellite methods depend substantially on knowing
the satellite orbits. For single receiver positioning, an orbital error is highly cor-
related with the position error. In the case of baselines, relative orbital errors are
approximately equal to relative baseline errors.

Orbital information is either transmitted by the satellite as part of the broad-
cast message or can be obtained in the form of precise ephemerides from several
sources. While good precise orbits are available in near real time, the final precise
ephemerides are available after several days.

This chapter provides a review of orbital theory to introduce the reader into the
methods of computing ephemerides.

3.2 Orbit description

3.2.1 Keplerian motion

Orbital parameters

Assume two point masses m; and m; separated by the distance r. Considering for
the moment only the attractive force between the masses and applying Newtonian
mechanics, the movement of mass m; relative to m; is defined by the homogeneous
differential equation of second order

- G (m +H12)r

3 =0, (3.1)
r
where
r ... relative position vector with ||r|| = r,
. d’r . .
I = ) relative acceleration vector ,
G ... universal gravitational constant,

and the time parameter ¢ being an inertial (i.e., dynamic) time. In fact, the inertial
time is provided by the system time of the respective GNSS.

In the case of an artificial satellite orbiting the earth, both bodies can be con-
sidered in a first approximation as point masses and the mass of the satellite can be
neglected. The product of G and the earth’s mass M, is denoted as the geocentric
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Table 3.1. Keplerian orbital parameters

Parameter Notation

Q Right ascension of ascending node
i Inclination of orbital plane

w Argument of perigee

a Semimajor axis of orbital ellipse

e Numerical eccentricity of ellipse
Ty Epoch of perigee passage

gravitational constant . According to the current IERS conventions, the numerical
value for y is

u=GM,=3986004.418- 105 m’s~2.

The analytical solution of differential equation (3.1) can be found in textbooks on
celestial mechanics (e.g., Brouwer and Clemence 1961; Beutler 1991, 1992) and
leads to the Keplerian motion defined by six orbital parameters which correspond
to the six integration constants of the second-order vector equation (3.1). Satellite
orbits are elliptical, and the six associated parameters are listed in Table 3.1. The
point of closest approach of the satellite with respect to the earth’s center of mass is
called perigee and the most distant position is the apogee. The intersection between
the equatorial and the orbital plane with the unit sphere is termed the nodes, where
the ascending node defines the northward crossing of the equator. A graphical rep-
resentation of the Keplerian orbit is given in Fig. 3.1.

The mean angular satellite velocity n (also known as the mean motion) with
revolution period P follows from Kepler’s third law given by

_m_ n (3.2)

n
P a3

Assume an orbit with the semimajor axis a = 26 560 km. The substitution of a
into Eq. (3.2) yields an orbital period of roughly 11.97 hours in the dynamic time
system or, equivalently, 12 sidereal hours. The ground track of the satellite, thus,
repeats every sidereal day.

The instantaneous position of the satellite within its orbit is described by angu-
lar quantities known as anomalies. The term anomaly has been retained for histori-
cal reasons. Table 3.2 lists anomalies commonly used. The mean anomaly M(¢) is a
mathematical abstraction relating to mean angular motion, while both the eccentric
anomaly E(¢) and the true anomaly v(f) are geometrically producible (Fig. 3.1). The
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Fig. 3.1. Keplerian orbit
three anomalies are related by the formulas

M) =n@-Ty), (3.3)
E(t) = M(t) + esin E(2), (3.4)

1+ E(t
u(t) = 2 arctan ¢ tan Q , (3.5)

1-e 2

where e denotes the first numerical eccentricity. Equation (3.3) is valid by definition
and shows that the mean anomaly can be used instead of T as a defining parameter
for the orbit. Equation (3.4) is known as Kepler’s equation and is obtained in the
course of the analytical integration of Eq. (3.1). Finally, Eq. (3.5) follows purely
from geometric relations. The proof is left to the reader.
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Table 3.2. Anomalies of the Keplerian orbit

Notation Anomaly

M(1) Mean anomaly
E() Eccentric anomaly
v(t) True anomaly

To become more familiar with the various anomalies, assume an orbit with a
semidiurnal orbital period and an eccentricity of e = 0.1. At an epoch 3 hours
after perigee passage, the mean anomaly is M = 90.0000°. The calculation of the
eccentric anomaly requires iteration and gives the value £ = 95.7012°. The true
anomaly is obtained as v = 101.3838°.

Orbit representation

The coordinate system e, e, defining the orbital plane is shown in Fig. 3.1. The
position vector r and the velocity vector I = dr/dt of the satellite can be represented
by means of the eccentric as well as the true anomaly:

cosE —e CcoS v
r=a =r , (3.6)
V1—-¢e2sinE sinv
1= 2
r=a(l—ecosE) = L4 =¢) (3.7)
1+ecosv

i._naz —sinE _\/T —sinv 3.8)
r V1 -¢2 cosE a(l-e?) | cosv+e | '

. na? f 2 1
r:T\/l—(ecosE)Z: ,u(;—;). (3.9)

The components of the vector r are evident from the geometry in Fig. 3.1 where
the semiminor axis b of the orbital ellipse is replaced by a V1 — ¢2. The geocentric
distance r = r(E) corresponds to the norm ||[r(E)|| and follows from simple algebra.
The representation r = r(v) is known as polar equation of the ellipse (Bronstein et
al. 2005: p. 213).

The derivation of the velocity vector I and its norm 7 is laborious and the result
is given without proof. It is worth noting that Eq. (3.9) when squared and divided
by 2 relates kinetic energy on the left side with potential energy on the right side,
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where a is constant by definition. Hence, Eq. (3.9) can be recognized as the law of
energy conservation in the earth-satellite system!

The transformation of r and r into the equatorial system X(i) is performed by a
rotation matrix R and results in vectors denoted by @ and @. The superscript “s”
generally indicating a satellite is omitted here for simplicity. The vectors expressed
in the orbital system must be considered as three-dimensional vectors for the trans-
formation. Therefore, the axes e, e, are supplemented with an es-axis which is
orthogonal to the orbital plane. Since r and I are vectors in the orbital plane (rep-
resented by e, e»), their e3-component is zero.

The transformation is defined by

o0=Rr,
(3.10)
0 =RrT,

where the matrix R is composed of three successive rotation matrices and is given
by

R = R3{-Q} Ri{-i} R3{-w}

cos Q cos w —cosQsinw . ..
. . . . . sinQsini
—sinQsinwcosi —sin{2coswcosi
= sin Q cos w —sin Qsin w .. (3.1
) . . —cosQsini
+cosQsinwcosi +cosL2coswcosi
sin w sin i CcoS w sin i cos i

= [el () 93].

The column vectors of the orthonormal matrix R are the axes of the orbital coordi-
nate system represented in the equatorial system X(l.).

In order to rotate the system X(i) into the terrestrial system X;, an additional
rotation through the angle ®, the Greenwich sidereal time, is required. The trans-
formation matrix, therefore, becomes

R’ = R3{00} R3{-Q} Ri{-i} R3{-w}. (3.12)

The product R3{®g} R3{—Q} can be expressed by a single matrix R3{—¢}, where
¢ = Q— g is the longitude of the ascending node. Hence, Eq. (3.12) can be written
in the form

R" = R3{-} Ri{-i} R3{-w} (3.13)

and the matrix R’ corresponds to the matrix R if in Eq. (3.11) the parameter Q is
replaced by ¢.
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For a numerical example, assume a satellite orbiting in a Kepler ellipse with
the following parameters: a = 26 000km, e = 0.1, w = —140°, i = 60°, £ = 110°.
To calculate the position and velocity vector in the earth-fixed equatorial system at
an epoch where the eccentric anomaly is £ = 45°, the vectors are first calculated
in the orbital plane using Eqs. (3.6) through (3.9). Then, the transformation into
the equatorial system is performed by means of Eq. (3.10), but using the rotation
matrix R’. The final result is

0 =[11465, 3818, —20922] [km],
0 =[-1.2651, 3.9960, —0.3081] [kms~'].

In addition to the fixed orbital system e;, another orthonormal system e’ may be
defined. This system rotates about the e3-axis because the e]-axis always points to-
wards the instantaneous satellite position. Hence, the unit vectors e can be derived
from the position and velocity vectors by

., 0
e =—,
" el

Note that the base vectors € correspond to the column vectors of a modified rota-
tion matrix R* if the parameter w is replaced by (w + v) in Eq. (3.11).

The transformation of a change Ag in the position vector into the orbital system
e’ results in a vector Ar = [Ary, Arp, Ar;] with its components computed along the
respective axes e:

»
0% _e. e =eixel. (3.14)

e>k = - =
37 Jlox @l

Arp =€} - Ag radial component,
Arp = e; - Ao along-track component, (3.15)
Ars =e€5 - AQ across-track component.

Inversely, Ag is calculated if the vector Ar is given. The solution follows from the
inversion of Eq. (3.15) and leads to

Ao =R"Ar. (3.16)

For a numerical examination assume a change Ag = [0.1, 1.0, —0.5] [km] in the
satellite position of the previous example. Applying Eqs. (3.14) and (3.15) gives
Ar =[0.638, 0.914, 0.128] [km].

Differential relations

The derivatives of @ and ¢ with respect to the six Keplerian parameters are required
in the subsequent section. The differentiation can be separated into two groups
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because in Eq. (3.10) the vectors r and I depend only on the parameters a, e, T,
whereas the matrix R is only a function of the remaining parameters w, i, €.

The differentiation of r and I leads to time-dependent vectors which are given in
Hofmann-Wellenhof et al. (2001: Egs. (4.20) through (4.25)), where dm = —ndT)
is substituted. Considering Eq. (3.11), the differentiation of the matrix R with re-
spect to the parameters w, i, £ is simple and does not pose any problem.

Hence, the differential relations

or or or OR R oR
dg = R~ da + R—de + Ro—dm + —rdw + —rdi + —rdQ,
(] 9a a+ e om + W r + o rdi+ an’
o o ok OR oR. = OR
dg = Re=da + Ro-de + Ro—dm + =it dw + i di+ SSFdQ

(3.17)

are obtained. Note that all terms in Eq. (3.17) are time-dependent, although the
derivatives of the matrix R with respect to the parameters w, i, £ are constant.

3.2.2 Perturbed motion

The Keplerian orbit is a theoretical orbit and does not include actual perturbations.
Consequently, disturbing accelerations d¢ must be added to Eq. (3.1), which is
now expressed in the equatorial system. The perturbed motion, thus, is based on an
inhomogeneous differential equation of second order:

v M v
9+Q—3@=d9- (3.18)

One should note that, for MEO satellites, the acceleration ||9|| due to the central
attractive force u/o” is at least 10* times larger than the disturbing accelerations.
Hence, for the analytical solution of Eq. (3.18), perturbation theory may be ap-
plied, where, initially, only the homogeneous part of the equation is considered.
This leads to a Keplerian orbit defined by the six parameters p;, i = 1,2,...,6
at the reference epoch #. Each disturbing acceleration d@ causes temporal varia-
tions pjo = dpjo/dt in the orbital parameters. Therefore, at an arbitrary epoch ¢, the
parameters p; describing the osculating ellipse are given by

pi = pio + pio (t — to) . (3.19)

In order to obtain time derivatives p;y, the Keplerian motion is compared to the
perturbed motion. In the first case, the parameters p; are constant, whereas in the
second case they are time-dependent. Thus, for the position and velocity vector of
the perturbed motion one may write

0 = ofz, pi(D},
(3.20)

0 =olr pi(}.
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Differentiating the above equations with respect to time and taking into account
Eq. (3.18) leads to

do (e dp;
_oe ¢ api 21
¢ +;(ﬁpi dr |’ 62D
90 (00 dp\ _ u . .
_oe 9@ dpi) _ _H _ 22

Since an (osculating) ellipse is defined for any epoch ¢, the Eqgs. (3.21) and (3.22)
must also be valid for Keplerian motion. Evidently, equivalence is obtained with
the following conditions

26: ( de dpl) _
~i\op; dt ’

6 (3.23)
Z ( 90 dpl) _

pa op; dt

In the following, for simplicity, only one disturbing acceleration is considered. The
two vector equations (3.23) correspond to six linear equations which, in vector
notation, are given by

Ax=¢, (3.24)
where
(Je Jo de de de Je
A - da Oe Om Ow 01 0Q
9@ 00 9o 90 90 G0
L Ja OJe Om OJdw 0i 0Q
or or or OR OR OR
| Raa Rae Rom oo "o “aa
oF  _ OF ok _OR _OR _O6R |’
R Rae Rom oo "o Taa
o [do dedn doodidoy
L dt dt dtr dtr dt dt
:[aéma)iQ]T,
0
r =

@
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The [6x6] matrix A requires the derivatives of @ and @ with respect to the Keplerian
parameters which have been developed in the preceding section, cf. Eq. (3.17). The
[6 X 1] vector € contains the disturbing acceleration. Finally, the six unknown time
derivatives appear in the [6 X 1] vector x.

The inversion of the system (3.24) leads to Lagrange’s equations, which are
given in Hofmann-Wellenhof et al. (2001: Eq. (4.34)), where the disturbing po-
tential R, associated with the disturbing acceleration by d¢ = grad R, has been
introduced. Note that the system fails for e = 0 or i = 0. This singularity can be
avoided by the substitution of auxiliary parameters (Arnold 1970: p. 28).

The Lagrange equations presuppose that the disturbing potential R is expressed
in function of the Keplerian parameters. When the acceleration d@ is represented
by components K; along the axes e}, the Lagrange equations can be transformed
using the identity

0 . 0
s :gradR-a—Ii = [k e’{+K2e§+K3e§]-a—§i. (3.25)
The simple but cumbersome algebra leads to the Gaussian equations. The result is
given in Hofmann-Wellenhof et al. (2001: Eq. (4.36)). Note that in the temporal
variations i and Q only the component orthogonal to the orbital plane, K3, appears,
whereas the variations a, é, 7 are affected by both components in the orbital plane,
K and K>. The variation @ contains all the components K;.

3.2.3 Disturbing accelerations

In reality, many disturbing accelerations act on a satellite and are responsible for
the temporal variations of the Keplerian elements. Roughly speaking, they can be
divided into two groups, namely those of gravitational and those of nongravita-
tional origin (Table 3.3). Because the MEO satellites are orbiting at an altitude of
approximately 20 000 km, the indirect effect of solar radiation pressure as well as
air drag may be neglected.

Table 3.3. Sources for disturbing accelerations

Gravitational Nonsphericity of the earth
Tidal attraction (direct and indirect)
Nongravitational ~ Solar radiation pressure (direct and indirect)
Air drag
Relativistic effects
Others (e.g., solar wind, magnetic field forces)




36 3 Satellite orbits

On the other hand, the shape (and, thus, the cross section) of the satellites is ir-
regular, which renders the modeling of direct solar radiation pressure more difficult.
The variety of materials used for the satellites, each has a different heat absorption
which results in additional and complicated perturbing accelerations. Also, accel-
erations may arise from leaks in the container of the gas propellant as mentioned
by Lichten and Neilan (1990).

To demonstrate the effect of disturbing accelerations, an example is computed
by assuming a constant disturbance dg = 10~ ms™2 acting on a MEO satellite.
The associated shift in the position of the satellite results from double integration
over time ¢ and yields do = (#?/2) dg. Substituting the numerical value ¢ = 12 hours
gives the shift after one revolution which is do ~ 1 m. This can be considered as
typical value.

Nonsphericity of the earth

The earth’s potential V can be represented by a spherical harmonic expansion
(Hofmann-Wellenhof and Moritz 2006: Eq. (7-1)) by

s n
v=51—zx%)@aﬁm@
r n=2 r
o] n ae n
+ Z Z (7) [CrmcosmAd + S, sSin mA] Py, (sin @) |

(3.26)

where a, is the semimajor axis of the earth, r is the geocentric distance of the satel-
lite, and ¢, A are its latitude and longitude. The parameters J,, Cyn, S denote
the zonal and tesseral coefficients of the harmonic development known from an
earth model. Finally, P, are the Legendre polynomials and P, are the associated
Legendre functions.

The term p/r on the right side of Eq. (3.26) represents the potential Vy for a
spherical earth, and its gradient, grad(u/r) = (u/r’)r, is regarded as the central
force for the Keplerian motion. Hence, the disturbing potential R is given by the
difference

R=V-V,. (3.27)

It is shown below that the disturbing acceleration due to J,, the term representing
the oblateness, is smaller by a factor of 10* than the acceleration due to V. On the
other hand, the oblateness term is approximately three orders of magnitude larger
than any other coefficient.
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Fig. 3.2. Three-body problem

A numerical assessment of the central acceleration of MEO satellites gives
¥ = u/ r* ~ 0.57ms™2. The acceleration corresponding to the oblateness term
in the disturbing potential R is given by ||d¥|| ~ ||0R/0r]| = 3u (ae/r*)* J» Pa(sin @).
The latitude of a satellite can only reach the value of its orbital inclination. Assum-
ing i = 55°, the maximum of the function P,(sin¢) = (3 sin 902 — 1)/2, therefore,
becomes 0.5. Finally, with J, ~ 1.1-1073, the numerical value ||d¥| ~ 5-107> ms~2
is obtained.

In the early days of operational satellite-based positioning systems a subset
of earth model coeflicients complete up to degree and order eight was considered
sufficient for satellite arcs of a few revolutions. Today, subsets of coefficients from
models such as the Earth Gravitational Model 1996 (EGM96) up to degree and
order 70 are recommended for high-accuracy orbit determination.

Tidal effects

Consider a celestial body with mass m; and the geocentric position vector @,
(Fig. 3.2). Note that the geocentric angle z between the celestial body and the satel-
lite can be expressed as a function of @, and @, the latter denoting the geocentric
position vector of the satellite, by

- e
lle,ll el

The additional mass exerts an acceleration with respect to the earth as well as with
respect to the satellite. For the perturbed motion of the satellite around the earth,
only the difference of the two accelerations is relevant; consequently, the disturbing
acceleration is given by

(3.28)

- 0
e, — el lig,lP

dé = G my (3.29)
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Among all the celestial bodies in the solar system, only the sun and the moon
must be considered because the effects of the planets are negligible. The geocentric
position vector of the sun and the moon are obtained by evaluating known analytical
expressions for their motion.

The maximum of the perturbing acceleration is reached when the three bod-
ies in Fig. 3.2 are in collinear position. In this case, Eq. (3.29) reduces to ||dg|| =
Gmy [1/]l0, — Qll2 - 1/||Qb||2]. For a numerical assessment, the corresponding nu-
merical values for the sun (Gm, ~ 1.3 - 10®°m?s72, g, ~ 1.5-10'' m) and of
the moon (Gmy, ~ 4.9 -102m3s72, o, ~ 3.8 - 108 m) are substituted. The result-
ing numerical values for the perturbing acceleration acting on MEO satellites are
2-107®ms~2 for the sun and 5 - 10~ m s=2 for the moon.

Apart from the direct effect of the tide-generating bodies, indirect effects due
to the tidal deformation of the solid earth and the oceanic tides must be taken into
account. Considering only the tidal potential W; of second degree, the disturbing
potential R due to the tidal deformation of the solid earth (Melchior 1978) is given
by

a\’ 1 a’
R:k(—e) Wy = = kGmj, —— (3cos’z— 1) (3.30)
0 2 (0op)’
with k = 0.3 being one of the Love numbers. The associated acceleration of a MEO
satellite is in the order of 107" m s~ as the reader may verify.

The model for the indirect effect due to the oceanic tides is more complicated.
Tidal charts with the distribution of the oceanic tides are required. In addition,
loading coefficients are needed. These coefficients describe the response of the solid
earth to the load of the oceanic water masses. The perturbing acceleration is again
in the order of 10~ ms~2.

As a consequence of the tidal deformation and the oceanic loading, the geo-
centric position vector @, of an observing site varies with time. This variation must
be taken into account when modeling receiver-dependent biases in the observation
equations.

Solar radiation pressure

Following Fliegel et al. (1985), the perturbing acceleration due to the direct solar
radiation pressure has two components. The principal component d@, is directed
away from the sun and the smaller component d@, acts along the satellite’s y-axis.
This is an axis orthogonal to both the vector pointing to the sun and the antenna
which is nominally directed towards the center of the earth.

The principal component is usually modeled by

0 —0Qp

_— (3.31)
lle — Q@H3

dg, =vK o}
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where @, denotes the geocentric position vector of the sun. The factor K depends
linearly on the solar radiation term, a factor defining the reflective properties of
the satellite, and the area-to-mass ratio of the satellite. The quantity v is an eclipse
factor. An eclipse occurs twice a year for each satellite when the sun is in or near
the orbital plane and lasts one hour at the maximum. The eclipse factor is zero when
the satellite is completely in the earth’s shadow, equals one when the satellite is in
sunlight, and for the penumbra regions the relation 0 < v < 1 applies.

The magnitude of d@, is in the order of 10~ ms™. Hence, an accurate model
for the factors K and v is required even for short arcs. The modeling is extremely
difficult since the solar radiation term varies unpredictably over the year and a sin-
gle factor for the reflective properties is not adequate for the satellite. Although
the mass in orbit is usually known well, the irregular shape of the satellites does
not allow for an exact determination of the area-to-mass ratio. A further problem
is the modeling of the earth’s penumbra and the assignment of an eclipse factor,
particularly in the transition zone between illumination and shadow.

The component d@, is often called y-bias and is believed to be caused by a
combination of misalignments of the solar panels and thermal radiation along the
y-axis. Since the magnitude of this bias can remain constant for several weeks, it
is usually introduced as an unknown parameter which is determined in the course
of the orbit determination. Note that this bias is two orders of magnitudes smaller
than the principal term.

That portion of the solar radiation pressure which is reflected back from the
earth’s surface causes an effect called albedo. In the case of MEO satellites, the
associated perturbing accelerations are smaller than the y-bias and can be neglected.

Relativistic effect
The relativistic effect on the satellite orbit is caused by the gravity field of the earth

and gives rise to a perturbing acceleration which is (simplified) given (Beutler 1991:
Eq. (2.5)) by

3ua(l—e?) o
——a Q_5 ,
where ¢ denotes the speed of light. Numerically assessed, the perturbing acceler-
ation results in an order of 3 - 107 ms™? (Zhu and Groten 1988). This effect is

smaller than the indirect effects by one order of magnitude and is mentioned for the
sake of completeness.

d = (3.32)

3.3 Orbit determination

In this section, orbit determination essentially means the determination of orbital
parameters and satellite clock biases. In principle, the problem is inverse to the
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navigational or surveying task. In the fundamental equation for the range o and the
range rate 0 between the satellite s and the observing site r,

o=le' -ell, (3.33)
. (QS - Qr) .

=== %%, 3.34
¢ o=l ® 539

the position vector @° and the velocity vector @° of the satellite are considered un-
known, whereas the position vector @, of the (stationary) observing site is assumed
to be known in a geocentric system.

The ranges in (3.33) are obtained with high precision as outlined in Sect. 5.1.
This is particularly true for delta range data since biases are eliminated by differ-
encing the ranges. The range rates in Eq. (3.34) are less accurate and are derived
from frequency shifts due to the Doppler effect. The observations for the orbit de-
termination are in most cases performed at terrestrial sites, but data could also be
obtained from orbiting receivers.

In the following, the satellite clock biases and other parameters are neglected
to emphasize the actual orbit determination which is performed in two steps. First,
a Kepler ellipse is fitted to the observations. In the second step, this ellipse serves
as reference for the subsequent improvement of the orbit by taking into account
perturbing accelerations.

3.3.1 Keplerian orbit

For the moment it is assumed that both the position and the velocity vector of the
satellite have been derived from observations. Now the question arises how to use
these data for the derivation of the Keplerian parameters.

The position and velocity vector given at the same epoch ¢ define an initial
value problem; and two position vectors at different epochs #; and #, define a (first)
boundary value problem. In principle, a second and a third boundary value problem
could also be defined; however, these problems are of no practical importance in
the context of this textbook and are not treated here.

Initial value problem

As stated previously, the derivation of the Keplerian parameters from position and
velocity vectors, both given at the same epoch and expressed in an equatorial sys-
tem such as X, is an initial value problem for solving the differential equation (3.1).
Recall that the two given vectors contain six components which allow for the calcu-
lation of the six Keplerian parameters. Since both vectors refer to the same epoch,
the time parameter is omitted.
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The solution corresponds to a transformation inverse to Eq. (3.10) and makes
use of the fact that quantities like distances or angles are invariant with respect to
rotation. Hence, the following equations are obtained:

lle®Il = Iirll,
o*Il = I1ell,
(3.35)
e @’ =r-r,
lle* x @°ll = [Ir X .
In addition, by substituting Egs. (3.6) and (3.8), the relations
0’ -0’ = yua (e sinkE), (3.36)

llo® X @°ll = Jpa(l —e?) (3.37)

are derived.

Now the inverse transformation is solved as follows. First, the geocentric dis-
tance r and the velocity i are calculated from the given vectors @° and ¢°. Based
on these two quantities, the semimajor axis a follows from Eq. (3.9). With a and
r determined, ecos E is calculated using Eq. (3.7) and esin E is derived using
Eq. (3.36). Hence, the eccentricity e and the eccentric anomaly E, and consequently
the mean and true anomalies M and v, are calculated. The cross product of @* and
0’ is equivalent to the vector of angular momentum and is orthogonal to the orbital
plane. Therefore, this vector is, after normalization, identical to the vector ej3 in
Eq. (3.11) from which the parameters i and £ = Q — ©¢ are deduced. According
to Eq. (3.37), the norm of the vector product allows for a check of the calculated
parameters a and e. For the determination of w, the unit vector k = [cos £, sin ¢, 0]
pointing from the geocenter to the ascending node is defined. From Fig. 3.1 one
can obtain the relations @° - k = rcos (w + v) and @° - X3 = r sini sin(w + v). The
two equations can be uniquely solved for w, since r, v, i are known.

For a numerical example, start with a position vector @* and the corresponding
velocity vector @° given by

0° =[11465, 3818, —20923] [km],

0° = [-1.2651, 3.9960, —0.3081] [kms~!]

to determine the Keplerian parameters. This is the task inverse to the numerical
example in Sect. 3.2.1 and the result can be checked from there.
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Boundary value problem

Now it is assumed that two position vectors @°(¢#;) and @°(#,) at epochs #; and 1, are

available. Note that position vectors are preferred for orbit determination since they

are more accurate than velocity vectors. The given data correspond to boundary

values in the solution of the basic second-order differential equation, cf. Eq. (3.1).
An approximate method for the derivation of the Keplerian parameters makes

use of initial values defined for an average epoch ¢ = (¢] + 1,)/2:

0'(r) + 0°(t1)
2 9

0°(n) — 0%(11)
h—1 '

0'(1) =
(3.38)
0°(n) =

The rigorous solution starts with the computation of the geocentric distances

ri=r() = e’ ol
(3.39)

ry =r(t) = |l@* ()l

The unit vector e3, orthogonal to the orbital plane, is obtained from a vector product
by

o QU)X Q0)
T et x @)

and produces the longitude £ and the inclination angle i, cf. Egs. (3.11) and (3.13).
As demonstrated earlier, the argument of the latitude u = w + v is defined as the an-
gle between the satellite position and the ascending node vector k = [cos £, sin ¢, O].
Hence, the relation

(3.40)

ri cosu; = k- @%(t;), i=1,2 (3.41)

is obtained from which the u; with u, > u; can be deduced uniquely. There are now
two equations, cf. Eq. (3.7),

_ a(l —e?)
T 1+ecos(ui —w)’

" i=1,2, (342)
where the parameters a, e, w are unknown. The system can be solved for a and e
after assigning a preliminary value such as the nominal one to w, the argument of
the perigee. Based on the assumed w and the u;, the true anomalies v; and, subse-
quently, the mean anomalies M; are obtained. Therefore, the mean angular velocity
n can be calculated twice by the formulas

uo_ My-M

= JE =2 3.43
" a’ h—1 ( )
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cf. Egs. (3.2) and (3.3). The equivalence is achieved by varying w. This iterative
procedure is typical for boundary value problems. Finally, the epoch of perigee
passage T follows from the relation

M;
To=t;——. (3.44)

n
For a numerical solution of the boundary value problem assume two position vec-
tors @°(#1) and @°(#2), both represented in the earth-fixed equatorial system X; and

with At = t, — t; = 1 hour:
o°(t)) =[11465, 3818, -20923] [km],

0’(h) =[ 5220, 16754, —18421] [km].

The application of Eqgs. (3.39) through (3.44) results, apart from rounding errors,
in the following set of parameters for the associated Kepler ellipse: a = 26 000 km,
e=0.1, w=-140° i=60° £=110° and Ty = #; — 1.3183".

Orbit improvement

If there are redundant observations, the parameters of an instantaneous Kepler el-

lipse can be improved. The position vector @y associated with the reference ellipse

can be computed. Each observed range, for example, gives rise to the relation
Q-0 do*

ey — el

The vector dg* can be expressed as a function of the six Keplerian parameters,

cf. Eq. (3.17). Thus, Eq. (3.45) actually contains the differential increments for the
six orbital parameters.

0=00+do =1y —ell+ (3.45)

3.3.2 Perturbed orbit

Analytical solution

As known from previous sections, the perturbed motion is characterized by tempo-
ral variations of the orbital parameters. The analytical expressions for these varia-
tions are given by the Lagrange equations or Gaussian equations, cf. Sect. 3.2.2.

In order to be suitable for Lagrange’s equations, the disturbing potential must
be expressed as a function of the Keplerian parameters. Kaula (1966) was the first
who has performed this transformation for the earth potential. The resulting relation
for the disturbing potential is

R = iAn(a) i i anp(i)
n=2

m=0p=0 (3.46)

: Z anq(e) Snmpq(w’ Q, M; 00, Crns S im) »

q:—OO
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Table 3.4. Perturbations due to the earth’s gravity field

Parameter Secular Long-periodic  Short-periodic
a no no yes
e no yes yes
i no yes yes
Q yes yes yes
w yes yes yes
M yes yes yes

where the original formulation has been slightly changed since the former nota-
tions Jy;, = —Cpp, and Ky, = =S, are not used any more (Hofmann-Wellenhof
and Moritz 2006: p. 257). Recall that n denotes the degree and m the order of the
spherical harmonics in the disturbing potential development. Each of the functions
An, Funp, Gupg contains only one parameter of a Kepler ellipse; however, the func-
tion S 4 18 composed of several parameters and can be expressed as function of
the frequency

b=m-2p)o+n-2p+q) M+m(Q-0yp), (3.47)

which is a measure of the spectrum of the perturbations.

The conditions (n—2p) = (n—2p+¢q) = m = 0lead to yy = 0 and, thus, to secular
variations. Because of m = 0, they are caused by zonal harmonics. If (n — 2p) # 0,
then the variations depend on w and are, therefore, generally long-periodic. Finally,
the conditions (n—2p +¢q) # 0 and/or m # O result in short-periodic variations. The
integer value (n — 2p + q) gives the frequency in cycles per revolution and m the
frequency in cycles per (sidereal) day.

A rough overview of the frequency spectrum of the Keplerian parameters due
to the gravity field of the earth is given in Table 3.4. Summarizing, one can state
that the even-degree zonal coefficients produce primarily secular variations and the
odd-degree zonal coeflicients give rise to long-periodic perturbations. The tesseral
coefficients are responsible for short-periodic terms. From Table 3.4 one can see
that short-periodic variations occur in each parameter. With the exception of the
semimajor axis, the parameters are also affected by long-periodic perturbations.
Secular effects are only contained in Q, w, M. The analytical expression for the
secular variations of these parameters due to the oblateness term J, is given as an
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example:

. 3, cosi
Q:—Enaemh,
3, 5cos?i—1

T4 e a2 (1 — e2)? 2> (3.48)

3 , 3cos?i-1 J
— "
42 V(1 = e2)3

The first equation describes the regression of the node in the equatorial plane, the
second equation expresses the rotation of the perigee, and the third equation con-
tributes to the variation of the mean anomaly by M = n + riz. Assuming an orbital
inclination i = 55° of a MEO satellite, the numerical values Q ~ —0.03° per day,
w ~ 0.01° per day, and 1 = 0 are obtained. The result for 7 is verified immediately
since the term 3 cos?i — 1 becomes approximately zero for the chosen inclination.
Special attention must be paid to resonance effects which occur when the period of
revolution corresponds to a harmonic in the gravity potential. Thus, MEO satellites
are placed in such orbits where an orbital period very close to half a sidereal day is
avoided.

The tidal potential also has a harmonic representation and, thus, the tidal per-
turbations can be analytically modeled. This was performed first by Kozai (1959)
and, analogous to the earth’s potential effect, has led to analytical expressions for
the secular variations of the node’s right ascension € and of the perigee’s argument
w. The reader may find the respective formulas in Kozai (1959).

Numerical solution

If the disturbing acceleration cannot be expressed in analytical form, one has to
apply numerical methods for the solution. Therefore, in principle, with initial values
such as the position and velocity vectors 9(fy) and Q(fy) at a reference epoch 7y, a
numerical integration of Eq. (3.18) could be performed. This simple concept can
be improved by the introduction of a Kepler ellipse as a reference. By this means,
only the smaller difference between the total and the central acceleration must be
integrated. The integration results in an increment A@ which, when added to the
position vector computed for the reference ellipse, gives the actual position vector.

The second-order differential equation is usually transformed to a system of
two differential equations of the first order. The velocity vector is defined by

t

0(t) = 0(to) + f 0(to) dt = 0(1o) + f

To

u

Jo(t) —
0(%) ()

o(to)|dr  (3.49)
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and the position vector reads

o(?) = o(fp) + f 0(to) dt . (3.50)

The numerical integration of this coupled system can be performed by applying the
standard Runge—Kutta algorithm (e.g., Kreyszig 2006: p. 892).

Numerical methods can also be applied to the integration of the disturbing equa-
tions of Lagrange or Gauss. These equations have the advantage of being differen-
tials of the first order and, therefore, must only be integrated once over time.

This section concludes with a short outline of the first-order Runge—Kutta al-
gorithm. Let y(x) be a function defined in the interval x; < x < x, and denote by
v = dy/dx its first derivative with respect to the argument x. The general solution
of the ordinary differential equation of the first order

v =22 you (3.51)
dx

follows from integration. The particular solution is found after assigning the given
numerical initial value y; = y(x;) to the integration constant. For the application
of numerical integration, first the integration interval is partitioned into n equal and
sufficiently small Ax = (x; — x1)/n, where n is an arbitrary integer number greater
than 0. Then the difference between successive functional values is obtained by the
weighted mean

Ay = Y+ A =y = [P +2(47 + H0) + P (3.52)
where

Ay =y (y, x) Ax,

Ay@ =y (y+ Ay D)2, x + Ax/2) Ax,

Ay® =y (y+Ay@ /2, x+ Ax/2) Ax,

Ay@ =y (y + Ay, x+ Ax) Ax.

Hence, starting with the initial value y; for the argument x;, the function can be
calculated for the successive argument x; + Ax and so on.

For a numerical example, assume the ordinary first-order differential equation
¥y =y — x+ 1 with the initial value y; = 1 for x; = 0. The differential equation
should be solved for the argument x, = 1 with increments Ax = 0.5. Starting
with the initial values for the first interval, successively the values Ay(l) = 1.000,
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Ay? = 1.125, Ay® = 1.156, and Ay® = 1.328 are obtained. The corresponding
weighted mean is Ay = 1.148. Replacing the initial values in the second interval
by x = x; + Ax = 05 and y = y; + Ay = 2.148 and proceeding as before yields
Ay = 1.569 and, thus, the final result y, = y; + X Ay = 3.717. Note that the function
y = e* + x, satisfying the differential equation, gives the true value y, = 3.718. With
an increment Ax = 0.1, the numerical integration would provide an accuracy in the
order of 107°.

3.4 Orbit dissemination

3.4.1 Tracking networks

Objectives and strategies

The orbit determination for GNSS satellites is based on observations at monitor
stations of the respective control segment.

Global networks lead to higher accuracy and reliability of the orbits compared
to those determined from regional networks. The tie of the orbital system to terres-
trial reference frames is achieved by the colocation of GNSS receivers with, e.g.,
VLBI and SLR trackers. The distribution of the sites is essential to achieve the
highest accuracy. Two different approaches may be compared. In the first case, the
sites are regularly distributed around the globe; in the second case, each network
site is surrounded by a cluster of additional points to facilitate ambiguity resolution
and, thus, strengthen the solution of the orbital parameters by a factor of three to
five.

Examples for global networks

Several global networks have been established for orbit determination. Some net-
works are of regional or even continental size such as the Australian GPS orbit
determination network. Subsequently, some examples of global networks are given.

The first civil large-scale global orbit tracking experiment (GOTEX) was per-
formed in the fall of 1988 and aimed at the colocation of GPS equipment at existing
VLBI and SLR sites. The data were collected to permit an accurate tie between the
WGS-84 and the VLBI/SLR systems. About 25 sites, distributed worldwide, were
occupied during the three weeks of the campaign.

The cooperative international GPS network (CIGNET) was operated by the
US National Geodetic Survey (NGS) with tracking stations located at VLBI sites.
The service started in 1988 with 8 stations in North America, Europe, and Japan.
By 1991, already 20 globally distributed stations were participating (Chin 1991).
In the following three years, 30 more stations were incorporated into the network.
The charter of CIGNET was limited to the collection and distribution of the raw
tracking data and there was no intention to provide global orbits.



48 3 Satellite orbits

= = Thule A\rbase’? Ny-Alesund —
=S iE 3 -
=z == Kangerlussua - Potsdam £~ = Bilibino .
= Yellowknife, >, cal 23 Hoein Borowiec T .
=3 E ol Churchill = _ Westerborko Onsala Olsztyn Arti Krasnoyarsk ;

L= : CFS Flin Flon, &\ D Scheffervile Brussols, 7 Jozefoslaw o LA R

& ) = : ]
Penticton ¢ "% Lac du Bonnet St. John's Koetzting oKiev Ttk Petrcpaviovak

Algonquin Park.eeOttawa’ Zimmerwald — & # Graz ICs 5 Bishkek
= o [N .
North Liberty & © Qf‘WeS"Ofd Villafranca: - 5\§Trag§on . * Urumai
ab

g #PieTown  Greenbalt 8- %MNicosia it

Goldston
Fort Davis

Tsukuba

Maspalomas_,
¥

*Lhasa

o
’Dededo
B

RS “$_§> Christiansted
Mauna Kea ..

2
2+ Jabinu &, Dy

Papeete 4 Danwj
N p /} ) Karratha Cape Ferguson .
Krugersdorp Alice - >
* Dongara Springs) Noumea
Richardsbay Perth 3 Tidbinbilla
’Gough Ceduna___& f
-
JKerguelen Hobart

Whangaparaoa

Waitangi
N g

NELRiC Grande ~

'O'Higgins East Ongle Island Davis Casey
5 Mawson
e Sanae IV Ross Island!

Fig. 3.3. IGS tracking network (reference frame stations only) as per 2006

In 1990, the International Association of Geodesy (IAG) decided to install the
International GPS Service for Geodynamics (IGS) (Mueller 1991). After a test cam-
paign, routine activities started on January 1, 1994. The main purpose of this service
(where meanwhile the term GPS has been replaced by GNSS) is orbit determination
for geodynamic applications which require highest accuracy.

The IGS is headed by the Central Bureau located at the US Jet Propulsion Lab-
oratory (JPL). In August 2006, the tracking network (Fig. 3.3) was based on more
than 330 globally distributed active tracking sites with coordinates (and velocities)
related to the ITRF. The IGS stations collect code ranges and carrier phases from
all GNSS satellites in view using dual-frequency receivers. The data are analyzed
independently by seven agencies and are archived daily in receiver- and software-
independent exchange formats (RINEX and SINEX) by global and regional data
centers. Today, the IGS routinely provides high-quality orbits for all GNSS satel-
lites. Predicted orbits with an accuracy of about 10 cm are available in near real
time, whereas postprocessed orbits have a delay of about 1 day (rapid solution) or
two weeks (final solution). The accuracy of the final solution is estimated to be bet-
ter than 5 cm. Also, the raw tracking data, the satellite clock parameters, the earth
orientation parameters (EOP), and other data like ionospheric and tropospheric in-
formation are available through the service. Associated with the IGS is an informa-
tion service which is accessible at http://igscb.jpl.nasa.gov. Further details on the
IGS are given in Gurtner (1995), Beutler (1996), Neilan and Moore (1999).
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3.4.2 Ephemerides

Three sets of data are available to determine position and velocity vectors of the
satellites in a terrestrial reference frame at any instant: almanac data, broadcast
ephemerides, and precise ephemerides. The data differ in accuracy (Table 3.5) and
are available either in real time or with some delay (i.e., latency) after the fact.

Almanac data

The purpose of the almanac data is to provide the user with adequate data to facil-
itate receiver satellite acquisition and for planning tasks such as the computation
of visibility charts. The almanac data are regularly updated and are broadcast as
part of the satellite message. The almanac message essentially contains parameters
for the orbit and satellite clock correction terms for all satellites of the respective
GNSS.

Table 3.6 serves as an example for GPS satellites, but similar data are available
for GLONASS and Galileo. All angles are expressed in semicircles (i.e., multiples
of 180°). The parameter £y denotes the difference between the node’s right ascen-
sion at epoch #, and the Greenwich sidereal time at 7y, the beginning of the current
GPS week. The reduction of the Keplerian parameters to the observation epoch ¢ is
obtained by the formulas

M=My+n(t—1ty),
i =54°+6i, (3.53)

€ =L+ Q(t—t,) — w (t—19),

where w, = 7292 115.1467 - 10" rads™! is the (untruncated) angular velocity of
the earth. The other three Keplerian parameters a, e, w remain unchanged. Note
that in the formula for ¢ in Eq. (3.53) the second term on the right side of the
equation considers the node’s regression and the third term expresses the uniform
change in the sidereal time since epoch fy. An estimate for the satellite clock bias

Table 3.5. Uncertainties of ephemerides

Ephemerides Uncertainty Remark

Almanac Some kilometers Depending on the age of data
Broadcast ephemerides ~1m Or even better

Precise ephemerides 0.05-0.20 m Depending on the latency
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Table 3.6. Almanac data (GPS)

Parameter Explanation
ID Satellite identification number
WEEK Current GPS week
t, Reference epoch in seconds within the current week
Va Square root of semimajor axis in ymeter
e Eccentricity
My Mean anomaly at reference epoch
w Argument of perigee
ol Inclination offset from 0.3 semicircles (£ 54°)
) Longitude of the node at weekly epoch 7y
Q Drift of node’s right ascension per second
aop Satellite clock offset in seconds
ai Satellite clock drift coefficient
is given by
0 =ap+a (t—1,). (3.54)

Almanac data are also available from a variety of information services.

Broadcast ephemerides

The broadcast ephemerides are based on observations at the monitor stations of the
respective control segment. The most recent of these data are used to compute a
reference orbit for the satellites. Additional tracking data are entered into a Kalman
filter and the improved orbits are used for extrapolation. The master station of the
control segment is responsible for the computation of the ephemerides and the sub-
sequent upload to the satellites.

The broadcast ephemerides are part of the satellite message. Essentially, the
ephemerides contain records with general information, records with orbital infor-
mation, and records with information on the satellite clock. The orbital information
is provided in the form of Keplerian parameters together with their temporal vari-
ations (e.g., for GPS) or position and velocity vectors at equidistant epochs (e.g.,
for GLONASS). The information on the satellite clock is in most cases given in the
form of coefficients to model the clock offset from system time by polynomials.

Table 3.7, serves as an example for GPS satellites. The parameters in the block
of orbital information are the reference epoch, six parameters to describe a Kepler
ellipse at the reference epoch, three secular correction terms, and six periodic cor-
rection terms. The nine correction terms consider the perturbation effects due to the
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Table 3.7. Broadcast ephemerides (GPS)

Parameter Explanation

1D Satellite identification number
WEEK Current GPS week

te Ephemerides reference epoch

Va Square root of semimajor axis in ymeter
e Eccentricity

My Mean anomaly at reference epoch

wo Argument of perigee

ip Inclination

to Longitude of the node at weekly epoch £y
An Mean motion difference

1 Rate of inclination angle

Q Rate of node’s right ascension

Cuc, Cus Correction coefficients (argument of perigee)
Cie, Crg Correction coeflicients (geocentric distance)
C

ic» Cig Correction coeflicients (inclination)
Ic Satellite clock reference epoch
aop Satellite clock offset
ap Satellite clock drift coefficient
a Satellite clock frequency drift coefficient

nonsphericity of the earth, the direct tidal effect, and the solar radiation pressure.
The ephemerides are regularly updated and should only be used during a specified
time interval.

In order to compute the satellite position at the observation epoch ¢, the follow-
ing quantities, apart from the parameters a and e, are needed:

/,u
— + An
PR

£ =6+QU—1,)-w, (-1,

w = wgy + CyecosQu) + C,5 sin(2u) , (3.55)
r =ryg+ CrcosCu) + C,g sin(2u) ,

i =iy+ CiccosRu) + CissinRu) +i(t — t.),
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where u = wg+v is the argument of latitude. The geocentric distance ryp is calculated
by Eq. (3.7) using a, e, E at the observation epoch. The vector r in the orbital plane
follows from the second representation in (3.6). Based on the reference epoch ., the
computation of £ is analogous to that in Eq. (3.53). Note that again the untruncated
value for the earth rotation rate must be used.

The block with clock parameters enables the computation of the satellite clock
error at an observation epoch ¢ by

S =ag+a(t—1t.)+ar(t—1). (3.56)

Precise ephemerides

The most accurate orbital information is provided by the IGS in the form of various
data sets for precise ephemerides. An overview on these products, their accuracy
and latency can be found at http://igscb.jpl.nasa.gov/components/prods.html. Cur-
rently, IGS data and products are free of charge for all users.

The precise ephemerides consist of satellite positions and velocities at equidis-
tant epochs. Typical spacing of the data is 15 minutes. Since 1985, NGS has been
involved in the distribution of precise GPS orbital data. At that time, the data were
distributed in the specific ASCII formats SP1 and SP2 and their binary counterparts
ECF1 and ECF2. Later, ECF2 was modified to EF13 format. The formats SP1 and
ECF1 contain position and velocity data, whereas SP2 and ECF2 contain just po-
sition data. This almost halves the storage amount since the velocity data can be
computed from the position data by numerical differentiation. In 1989, NGS de-
cided to add the GPS satellite clock offset data to the orbital formats. Furthermore,
the second-generation formats can handle up to 85 satellites (GPS and others) in-
stead of 35 GPS satellites included in the first-generation formats. Apart from the
clock corrections, the files often contain only position data; however, a header char-
acter on the first line allows for the inclusion of velocity data. The corresponding
ASCII format is denoted SP3 and the binary counterpart is ECF3 or (in a modified
version) EF18. The format SP3 is widely used and was also adopted by the IGS.

Each NGS format consists of a header containing general information (start
time, epoch interval, orbit type, etc.) followed by the data section for successive
epochs. These data are repeated for each satellite. The positions are given in kilo-
meters and the velocities are given in kilometers per second. The NGS formats are
described in Remondi (1991). Also, NGS provides software to translate orbital files
from one format to another.

The position and velocity vectors between the given epochs are obtained by in-
terpolation where the Lagrange interpolation, based on polynomial base functions,
is used. Note that Lagrange interpolation is also applicable to variable epoch series
and that the coefficients determined can be applied to considerably longer series
without updating the coefficients. This interpolation method is a fast procedure and
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can easily be programmed. Extensive studies by B.W. Remondi concluded that for
GPS satellites a 30-minute epoch interval and a 9th-order interpolator suffices for an
accuracy of some decimeters (i.e, about 1078). Another study by Remondi (1991)
using a 17th-order interpolator demonstrates that millimeter-level accuracies can
be achieved based on a 40-minute epoch interval.

For those not familiar with Lagrange interpolation, the principle of this method
and a numerical example are given. Assume functional values f(z;) are given at
epochs ¢;, j=0,1,...,n. Then,

_ -t 1) —tj-)( —tjy1) - — 1)
(tj—to)(tj—t1) - (tj = tj1) (Ej = Ljw1) -~ (1 = 1n)

70 (3.57)

is the definition of the corresponding base functions £;(¢) of degree n related to
an arbitrary epoch ¢. The interpolated functional value at epoch ¢ follows from the
summation

fy =) fap . (3.58)

J=0

The following numerical example assumes the functional values f(z;) given at
the epochs 7;:

f(to) = f(=3) =13,

f) =f+1) =17,

f(©2) = f(+5) =85.

The base functions are polynomials of second degree
t-t)t-n _ 1
(to— 1) (to—t2) 32

(t—1)(t-1) 1
by= —2 T2 o
= T —n) 16

(t—10)(t—-1) 1 5
OHt)= ————=—=({"+2t-3),
- -n) " 32
and, according to Eq. (3.58), the interpolated value for + = 4 is f(f) = 62. The
result is immediately verified since the given functional values were generated by
the polynomial f(f) = 21> + 5¢ + 10.

lo(r) = (-6t+5),

(> =21 - 15),



4 Satellite signals

4.1 Introduction

The different methods of satellite navigation are classified into passive and active
as well as into one-way (uplink = earth-to-space; downlink = space-to-earth) and
two-way ranging systems. Active systems require the user to emit signals. The three
major GNSS (GPS, GLONASS, Galileo) are passive one-way downlink ranging
systems. The satellites emit modulated signals that include the time of transmission
to derive ranges as well as the modeling parameters to compute satellite positions.
A three-layer model describes the emitted satellite signals best (Fig. 4.1).

The physical layer characterizes the physical properties of the transmitted sig-
nals. The ranging code layer describes the method of measuring the propagation
time. Rather than using a time pulse for propagation time observation, the ranging
code layer is based on a continuous but periodic modulated signal exploited within
correlation techniques. The periodicity is strictly synchronized to the time system
of the satellites and to the data message. Finally, the data-link layer commonly con-
tains the time of transmission, satellite ephemerides, etc. The data-link layer may
also be accomplished by other satellite or terrestrial communication links. This,
however, still requires a high level of synchronization between ranging code and
data-link layer.

data message
data-link layer generator

S

ranging code

ranging code layer generator 4,@
Juuy U

carrier frequency signal in space
physical layer generator 4,®_, (phase modulated)
AAAAAAAAAAAARAN i AAAAAAAA A
multiplier

Fig. 4.1. Composition of the navigation satellite signal
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4.1.1 Physical fundamentals

General remarks

Satellite navigation relies on electromagnetic waves, whose characteristics are de-
scribed by Maxwell’s equations. Oscillating electric or magnetic forces generate
the waves. The duality of electromagnetic waves manifests itself in the combined
propagation of an electric field and a magnetic field. An oscillating electric field
causes a magnetic field through magnetic flux. Electric induction is the affiliated
inverse effect.

The electric field vector E = [E,, E,] determines the polarization of the elec-
tromagnetic waves. A constant direction of E characterizes linear polarization. In
homogeneous, isotropic, and stationary media, which are media that do not show
any spatial or temporal variations of their physical properties, the electric field vec-
tor E and the magnetic field vector B are orthogonal to each other and also orthog-
onal to the propagation direction of the electromagnetic wave (Fig. 4.2). A varying
ratio between the elements of the field vector E indicates an elliptically or circu-
larly (i.e., constant amplitude of the field vector) polarized wave (Fig. 4.2). If the
electric field vector rotates clockwise, when looking into the direction of propa-
gation, the electromagnetic wave is right-handed polarized, otherwise left-handed.
Electromagnetic waves traveling through ionized gases or through the earth mag-
netic field undergo a change in their polarization. This effect, known as Faraday
rotation, causes linearly polarized signals to become elliptically or circularly po-
larized. The magnitude of rotation fluctuates. Satellite navigation treats this effect
by using circularly polarized signals by definition. Under certain circumstances,
specular reflecting surfaces change the right-handed circular polarization (RHCP)
to left-handed circular polarization (LHCP) and vice versa.

circular polarization
(right-handed)

propagation

Fig. 4.2. Linear and circular polarization
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Fig. 4.3. Electromagnetic wave representation

Electromagnetic wave representation

Electromagnetic waves are represented best by sinusoidal waves applying the the-
ory of harmonic motion (Fig. 4.3):

y(t) =asin(2nrft). “4.1)

The characteristic parameters describing the sinusoidal wave are the amplitude a,
the linear frequency f, and the time parameter . The amplitude a is defined as
the maximum or peak value respectively of a periodically varying quantity. The
linear frequency f describes the number of identical cycles per second (cps) and
is usually given in hertz (Hz) or decimal multiples of hertz (e.g., kHz = 10° Hz,
MHz = 10° Hz, GHz = 10° Hz).

The period T denotes the time needed to complete one cycle, thus,

T=-. 4.2
7 (4.2)

The circular frequency w, also denoted as angular velocity, is defined by
w=2nf. 4.3)

A short numerical example may clarify the above relations. Assume a linear fre-
quency f = 0.5 Hz, which corresponds to 0.5 cps. The associated circular frequency
is w = mrradians per second or, equivalently, 180° per second. Finally, the period T
equals 2 seconds.

Referring to Fig. 4.3, the point P moves along the perimeter of the circle with
the angular velocity w. The current state for a specific ¢ is defined by the phase
angle or briefly phase ¢, which is given by

p=wt, 4.4)
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when measured in radians or by

p=ft, (4.5)

when measured in cycles. The latter form will be used throughout this textbook.
Differentiation of (4.5) with respect to time yields

_de
f= (4.6)

and integrating the frequency f between the initial epoch 7y and epoch ¢ leads to the
equation

t
@(1) = ¢(to) = ffdl, 4.7

where ¢(tg) is denoted as initial phase.

Equations (4.4) through (4.7) and Fig. 4.3 describe the phase as a function of
time. However, considering a single epoch, the phase also varies with increasing
distance between emitter and receiver. In this spatial context, the phase is expressed
by range and wavelength. The latter is the distance between two recurrent states of
the wave, i.e., after one cycle or after the variation of ¢ by 2. The wavelength is
commonly denoted by A and given in meters. Thus, the remarkable relation

t
p— t = constant (48)
T

¢ = ¢(0)

SD:

o = constant =
=)

e
A

describes the proportionality between the temporal and spatial variation of the
phase, where o is the range equivalent to the phase proportional to z.

The complete phase equation combines both variations. Thus, the phase ex-
pressed in cycles is given by

@

=ftr—=. 4.9
p=ri-> (4.9)

Using the relation
c=Af, (4.10)

with ¢ = 299792458 ms~! being the speed of light, yields
Q
90=f(t—z) 4.11)

or, finally,

o= f(t—1t,), (4.12)
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where 7, is the time interval the wave needs to propagate the distance o.

For a numerical example consider an electromagnetic wave with a frequency
f =1.5GHz and calculate the phase 2 seconds after emission at a location 20 000
km distant from the emitter. According to (4.11), the continuous phase corresponds
to 2899930771.44 ... cycles. The fractional part of the continuous phase is de-
noted as observable phase and corresponds in this example to 0.44 ... cycles.

Doppler frequency shift

The Austrian physicist C. Doppler postulated in 1842, that a relative motion be-
tween transmitter and receiver will cause a frequency shift, today commonly known
as Doppler shift. An approaching transmitter seems to squeeze the waves, whereas
a receding transmitter lengthens the waves. In a first approximation, the Doppler
shift A f reads

1 1
Af=f-f = _;Ugfs =—5les (4.13)

where f° denotes the emitted frequency (the superscript s is chosen to associate
a satellite), f, the received frequency, and v, is the radial relative velocity (line-
of-sight velocity) of the emitter with respect to the receiver. Denoting the distance
between emitter and receiver by o leads to

do
Vp=—=0. 4.14
°T 0 Q ( )
The Doppler shift is, thus, a measure for velocity or, after integration over time,
proportional to range differences

t t

AQ:f@dt:—/lszfdt:—/lsAtp. (4.15)

fo To

Assume as an example a satellite orbiting in 20 000 km height which corre-
sponds to a mean velocity of about 3.9km s~ according to (3.9). Neglecting the
earth’s rotation, a stationary terrestrial receiver will not measure any Doppler shift
at the epoch of closest approach of the satellite since the relative radial velocity
equals zero at this moment. The maximum radial velocity, 0.9 km s~!, occurs when
the satellite crosses the horizon. Assume a transmitted frequency f* = 1.5 GHz,
then the Doppler shift corresponds to Af =4.7 kHz. This frequency shift results in
a phase change of 4.7 cycles after 1 millisecond, which corresponds to a change in
range of about 0.9 m. The result can be verified by multiplying the radial velocity
with the time span of 1 millisecond.
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Electromagnetic spectrum

The electromagnetic spectrum, also referred to as frequency spectrum, is repre-
sented in Fig. 4.4. Different systems and services use different bands of the electro-
magnetic spectrum, but its usage is strictly regulated by the International Telecom-
munication Union (ITU). The ITU allocates different parts of the frequency spec-
trum to different services, assigns frequencies to providers and users, and allots
frequencies to countries (International Telecommunication Union 2004).

Satellite navigation has been allocated to the L-, S-, and C-band. In the near
future, the latter is planned to be used as an uplink band; and in the more distant
future, it is considered as an option for further navigation signals. L-, S-, and C-
band belong to the microwave frequency window.

The assignment of frequencies follows the principle of first-come, first-served.
A primary service is not allowed to interfere with services in neighboring frequency
bands. Secondary services shall additionally neither interfere with services in the
same frequency band, nor claim protection from harmful interference of primary
services (International Telecommunication Union 2004). More specifically, the ITU
specifies the maximum level of interference between different services, thus, a sig-
nal may place a certain amount of energy in neighboring frequency bands.

ultraviolet visible light

A[m] 107'¢ 107 1072 10710 10°® &6 10* 1072 10° 10> 10* 10°
Il Il vv\ Il Il

cosmic | gamma . micro- radio audio
X-rays infrared
rays rays waves waves  |[waves
£Hz] 3-10% / 3.102
Notation Wavelength 4 Frequency f

Extremely high frequency (EHF) 0.1-1 cm  300-30 GHz

Super high frequency (SHF) 1-10 cm 30-3 GHz
Ultra high frequency (UHF) 10-100 cm 3-0.3 GHz

Very high frequency (VHF) 1-10 m 300-30 MHz
High frequency (HF) 10-100 m 30-3 MHz  Band f[GHz]
Medium frequency (MF) 0.1-1 km 3-0.3 MHz K 26.5-18
Low frequency (LF) 1-10 km  300-30 kHz Ku 18-12.4
Very low frequency (VLF) 10-100 km 30-3 kHz X 12.4-8

C 84

S 4-2

L 2-1

Fig. 4.4. Electromagnetic spectrum
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ITU classified GNSS as radionavigation satellite service (RNSS) and aeronau-
tical radionavigation service (ARNS). Especially the frequency bands allocated to
ARNS are strictly regulated, and thus particularly useful for safety-critical oper-
ations. GNSS is a primary service in the ARNS/RNSS frequency band 1559-
1610 MHz. The other frequency bands used by GNSS are coprimarily allocated
to satellite navigation and other services.

4.1.2 Propagation effects

Different physical phenomena affect electromagnetic wave propagation. Most of
these effects are frequency-dependent. Subsequently, selected phenomena are de-
scribed following the definitions of terms for radio wave propagation of the Institute
of Electrical and Electronics Engineers (1997).

Geometry of wave propagation

Reflection

Electromagnetic waves meeting a medium surface are partly reflected (cf. Fig. 4.5).
The incident and the reflected waves are symmetric to the normal of the surface and
together with it span a plane. A more general form of reflection is scattering, where
the energy of a wave is dispersed in various directions due to the interaction with
inhomogeneities of the medium. Maximal scattering occurs if the inhomogeneities
equal the wavelength 4. A smooth surface can be regarded as a speculum so that
incident electromagnetic waves are specularly reflected. Specular reflection causes
fluctuation of phase and amplitude and is to a great part deterministic. A rough
surface creates diffuse reflection. The differentiation between smooth and rough
surface is given by the Rayleigh criterion (Institute of Electrical and Electronics
Engineers 1997: p. 28).

Diffraction expresses the deviation of the direction of energy flow of a wave
when touching lightly an obstacle in passing. According to Huygens—Fresnel’s
principle, a wavefront is made up of an infinite number of isotropic radiators. A
wave, thus, does not reflect from a single point but from an entire surface. The
superposition of all different wave crests results in the wave propagating in the di-

reflected wave : incident wave
medium 1 z

medium 2 here: n, >ny

refracted wave

Fig. 4.5. Reflection and refraction of an electromagnetic wave
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rection under consideration. In this way, waves seem to be bent around an obstacle.
Jong et al. (2002: p. 98) conclude that in this way signals can be received when no
line-of-sight conditions occur.

Multipath signals are electromagnetic waves propagating not along the line of
sight between transmitter and receiver but reflected or scattered by any kind of
object (cf. Sect. 5.6).

Refraction
Refraction describes the change of propagation direction when a wavefront passes
from one to the other medium (cf. Fig. 4.5). According to Snell’s law, the sine of the
angle of incidence, §;, and the sine of the angle of refraction, 3,, define a constant
ratio. This ratio is equivalent to the ratio of the refractive indices n; of both media:
sinf; n
_—ﬂl = % — constant . (4.16)
sinB, np
The refractive index n; is defined as the ratio between the velocity v; of the wave in
a medium and the speed of light ¢ in vacuum, which is a universal constant,

n=L<, 4.17)
Vi
Snell’s law, thus, can be written in the form
nivy=muvy=c. (4.18)

Equation (4.18) implies that the refractive index for vacuum equals unity. A re-
fractive index greater than 1 implies that the electromagnetic waves are delayed
compared to the time needed to travel the same distance in vacuum with the speed
of light. The refractive indices are functions of water vapor, temperature, pressure,
frequency of the electromagnetic signals, and the amount of free electrons. Details
on this subject are given in Sect. 5.3.

Dispersion is the dependency of the phase velocity and, thus, of refraction on
the frequency. If dispersion occurs, a medium is called dispersive, e.g., the iono-
sphere is a dispersive medium at 1.5 GHz, while the troposphere is not.

Type of waves

An electromagnetic wave propagates in homogeneous media according to Fermat’s
principle along the path of shortest time. Taking into account Eqs. (4.10), (4.17),
and Snell’s law, the geometry of electromagnetic wave propagation is a function
of the frequency f. According to Fig. 4.6, three wave types, i.e., ground waves,
sky waves, line-of-sight waves, can be distinguished. Ground waves (f < 1.6 MHz)
follow the curvature of the earth. Sky waves (1.6 < f < 30 MHz) are reflected by
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line-of-sight
wave

Fig. 4.6. Electromagnetic wave propagation (Hofmann-Wellenhof et al. 2003: Sect. 4.2.4)

the ionosphere. As Uttam et al. (1997: p. 106) state, electromagnetic waves are re-
flected from the ionized layer depending on the degree of ionization, the frequency,
and the angle of incidence. One specific angle defines the critical or skip distance,
which defines the maximum elevation angle, where waves will be reflected by the
ionosphere. The critical distance changes during the day as a function of the ioniza-
tion. Line-of-sight waves (f > 30 MHz) propagate through the ionosphere, although
the ray path is still influenced by it.

Energy change during wave propagation

Definitions

Absorption is defined as the conversion of the energy of an electromagnetic wave
into heat. Absorption occurs when electromagnetic waves propagate through a
medium. Generally speaking, the higher the frequency, the larger the absorption
in the atmosphere.

Attenuation describes the relation between decreasing power with increasing
distance from the emitter. Attenuation, also denoted as transmission loss, is a func-
tion of absorption, the refractive index, and geometrical spreading. The latter effect
also occurs in free space, i.e., an idealized medium without any magnetic or electric
field and missing any obstruction. Gain, the opposite of attenuation, describes an
increasing ratio between received and emitted power.

Fading and scintillation, respectively, describe the temporal variation of the
signal power due to alternating physical characteristics along the transmission path.
Scintillation in particular describes irregular effects causing variability of phase and
amplitude. Ionospheric scintillation, affected by solar activity for example, is of
particular concern in auroral and polar regions.

Interference is the effect of energy change due to the superposition of electro-
magnetic waves.
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Measures

Power is the amount of energy transferred per unit time. Let P* be the power emit-
ted from the satellite and P, be the power measured at the receiver. A power ratio
P,/P* < 1 describes a transmission loss and P,/P°® > 1 defines a gain. A measure
for the power ratio is given in decibel units defined by

P,
10logo 5; =n  [dB]. (4.19)

Accordingly, n < 0 defines loss, whereas n > 0 describes gain. For example, n =
—3dB means that the received power is half the emitted power. A variation of
Eq. (4.19) is used to express an absolute power in decibel units. Therefore, the
power is related to 1 W, thus, n = 10log;,(P/1), where n expresses the power of
P and is given in decibel watt ({(BW). Assume, for example, an emitted power of
25W = 14dBW and a received power of 1071 W = —160 dBW, hence, the trans-
mission loss amounts to —174 dB.

In free space, the transmitted power is geometrical-homogeneously spread over
the surface of a sphere 47 0%, where o describes the distance between transmitter
and receiver. Antennas may concentrate the radiated power into certain directions.
The antenna directivity is described by variations of the antenna gain G. The prin-
cipal interrelation between the antenna gain and the effective antenna area (antenna
aperture) A is given by

f2
G=4nA=. (4.20)
c
With G* and G, denoting the antenna gains of the transmitting and receiving an-
tenna, the received power P, follows, according to Betz (2006), from

P, =P'G°G, Ly, (4.21)

where Ly denotes the free-space transmission loss. Therefore, increasing the effec-
tive antenna area will also increase the received power. The factor P°G* is called
the equivalent isotropic radiated power (EIRP). The quantity Lg follows from the
Friis transmission formula (Institute of Electrical and Electronics Engineers 1997:
p. 13)

2
C
Ly = ( g f) , (4.22)

where the original formula has been inverted to define Ly as a transmission loss.
For a numerical example, consider a distance of o = 20 000 km and a frequency of
f = 1.5 GHz. This results in a free-space loss of —182 dB. To account for any form
of attenuation, especially due to the atmosphere, foliage penetration (particularly
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under wet conditions), or building penetration, the factor k is introduced and the
actual transmission loss L reads

L=kLy, (4.23)

where k=0 means total signal blockage, whereas k=1 reveals no additional signal
loss except for Ly. Using the actual transmission loss, (4.21) reads

P.=P'G°G,L. (4.24)

Since the transmission loss is a function of the distance to the satellite and satellite
elevation, it changes as a function of time. The minimum received power level of
GNSS signals on the earth’s surface has typically a magnitude in the order of about
—160 dBW, depending on the emitted power, the free-space loss, and the antenna
gains (e.g., ARINC Engineering Services 2006a).

Earth’s atmosphere

The atmosphere of the earth is categorized into different layers according to their
physical properties and influences onto the electromagnetic waves. With respect to
the electromagnetic structure, the atmosphere is divided into the neutral atmosphere
and the ionosphere. While the neutral atmosphere comprises the troposphere and
the stratosphere, the GNSS community abbreviates this to the troposphere and calls
the delay due to the neutral atmosphere “tropospheric delay”.

The troposphere extends from the earth’s surface to about 50 km height. The
troposphere is nondispersive for frequencies up to 30 GHz. The tropospheric refrac-
tive index is a function of temperature, pressure, and partial water vapor pressure.
The latter consists of a dry and a wet component. About 90% of the tropospheric
delay is caused by the dry or hydrostatic part, which is again mainly a function of
pressure. The wet part depends on the water vapor and is, due to its high variability,
difficult to model (Rothacher 2001a). The magnitude of rain, fog, and cloud at-
tenuation is in contrast to the tropospheric delay negligible for L-band frequencies
(Mansfeld 2004: p. 64). As a consequence, GNSS is specified all-weather operable.
However, the rain, fog, and cloud attenuation must be considered, e.g., for C-band
transmissions (Irsigler et al. 2002).

The ionosphere is the electrically charged component of the higher atmosphere.
It is characterized by its free, neutral, and charged particles, where diversity varies
as a function of the time of day. The ionosphere is categorized into several layers, in
particular into D, E, and F in ascending height order. The ionization of the D-layer
(50-90 km) varies with sunlight. The low electron density in the D-layer and the
high particle density causes nearly complete deionization during night times. The
ionization of the E-layer (90-150km), denoted as the Kennelly—Heaviside layer
(Arbesser-Rastburg 2001), is caused by the ultraviolet and x-rays during day, and
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Fig. 4.7. Total electron content profiles (Issler et al. 2001)

cosmic rails and meteors during night. In the F-layer (150-1000 km), also called
the Appleton layer, the ionization is maximal around noon and decreases toward
sunset. The F-layer splits into the region F'1 (150-200 km) and F2 (200-1000 km)
during day. The maximal electron density can be found in the F2-layer. The iono-
spheric delay typically ramps up rapidly around 10" local time and peaks around
14" local time (Fig. 4.7). Typically it is low in the early morning hours.

The ionospheric refraction is modeled as a function of the electron density rep-
resented by the total electron content (TEC). The TEC is influenced by the solar
activity, diurnal and seasonal variations, and the earth’s magnetic field. Schematic
profiles of the electron density are given in Fig. 4.7. TEC can be modeled on a
global and continental level. Small-scale variations of TEC inhomogeneities are
not yet possible to predict.

Coronal mass ejections and extreme ultraviolet solar radiation cause large geo-
magnetic storms in the earth’s magnetic field (Volpe National Transportation Sys-
tems Center 2001). These storms may lead to a loss of lock in satellite tracking and
may cause acquisition problems. The phenomena, due to the characteristics of the
magnetic field of the earth, are especially critical in the polar regions. In general,
they increase the spatial and temporal variation of the electron content and cause
additional ionospheric scintillations in phase and amplitude, which is critical for
weak signal tracking or codeless receivers.

The solar activity is generally quantified by the sunspot number. Sunspots are
strong magnetic regions that appear as dark areas on the surface of the sun. In 1858,
the Swiss astronomer R. Wolf defined the sunspot number by combining groups of
sunspots with individual sunspots. The sunspot number shows an 11-year variation
cycle of the solar activity (Fig. 4.8).

In a dispersive medium, the phase velocity differs from the group velocity (cf.
Sect. 5.3.1). The group velocity describes the velocity of the envelope of a group
of electromagnetic waves. The ionized gases in the ionosphere cause the phases
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of the electromagnetic waves to shift. The phase advance leads to a phase velocity
greater than the speed of light. This does not contradict Einstein’s postulate of the
universal characteristic of the speed of light, since no information is transmitted by
a single electromagnetic wave. The phase advance and the group delay are equal in
size but different in sign. Practically speaking, code pseudoranges become longer
and phase pseudoranges get shorter.

The gradient of the refractive index with height along the path through the at-
mosphere bends the electromagnetic wave. Brunner and Gu (1991) computed that,
depending on the frequency, the ionospheric activity, and the other assumptions
they made, the ray path is separated from direct line of sight at a satellite elevation
angle of 15° by about 55-300 m.

4.1.3 Frequency standards

The key to the accuracy of satellite navigation is the fact that all signal compo-
nents are precisely controlled by atomic clocks. These clocks are based on atomic
frequency standards (AFS) which produce the reference frequency by stimulated
radiation. Today’s frequency standards show a stability over a day in the level of
Af/f=10""2to 10715 (Mansfeld 2004: p. 43). Quartz and rubidium frequency stan-
dards show good short-time stability, whereas cesium and hydrogen maser have a
better long-time performance. The emitted frequency can be modeled as function
of time ¢ by

fO = fu+ Af + (= 10)f + f(0), (4.25)

where f, denotes the nominal frequency, Af is the frequency offset, f corresponds
to the frequency drift, £(¢) is the random frequency component, and f is the ref-
erence epoch (Misra and Enge 2006: p. 111). Drift and offset can be modeled or
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calibrated, whereas the random error is of primary concern. The oscillator stabil-
ity is statistically estimated using the Allan variance or, if a frequency drift exists,
the Hadamard variance. A mathematical formulation can be found, for example, in
Wiederholt (2006).

The AFS in GNSS satellites are required to have long-time as well as short-
time stability with low failure rate. For this reason, AFS are used in the satellites
complementarily and redundantly. In this way it is guaranteed that the modeling
parameters of the oscillator errors, as provided by the control station and transmit-
ted to the users, are valid for a long time. The AFS in the satellites are affected by
the relative motion of the satellites with respect to the user and the variation of the
gravitational potential. Both effects are described by Einstein’s theory of the special
and general relativity (cf. Sect. 5.4).

4.2 Generic signal structure

The satellite signals should enable real-time range measurements as well as data
transmission capabilities. Any satellite signal has to serve an unlimited number of
users without interfering other systems, satellites, or services. The methodology
of range measurement is based on correlating two signals, namely the received
satellite signal with a locally generated replica.

4.2.1 Signal design parameter

The GNSS signal design (Fig. 4.1) depends primarily on the availability of the
carrier frequency bands according to ITU assignments. The selection of the fre-
quency band is a function of the service requirements, the propagation effects, and
the technical requirements regarding transmitter and receiver specifications. The
ranging code layer design is driven by the acquisition and tracking characteristics,
the correlation properties, the interoperability with other systems, as well as on the
implementation complexity. The data-link layer, finally, has to be constructed care-
fully to avoid a negative influence on the tracking performance of the receiver and
to ensure low bit error rates.

Power spectral density

The French mathematician J. Fourier postulated in 1807 that any arbitrary function
of time, i.e., signal s(¢), can be represented by a superposition of trigonometric
functions of different phase, amplitude, and frequency. Thus, any arbitrary sig-
nal may be represented in the time as well as in the frequency domain. Refer to
Brigham (1988) or Oppenheim et al. (1999) for a detailed introduction into Fourier
transformation and digital signal processing in general. The Fourier transformation
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for aperiodic continuous signals, which is the most general case, reads

(o)

S(f) = f s(t) e 2 gt (4.26)

—00

where i is the imaginary unit (i.e., i = —1). There exists a close relation between
continuity and periodicity of the time and frequency domain representation as dis-
cussed in Brigham (1988).

The intentional alternation of the frequency spectrum is denoted as filtering.
Filters can only be designed to process a limited time interval. Real-time filters are
additionally limited by causality, which requires that signal values out of the future
cannot be processed. Thus, it is not possible to design ideal low-pass, high-pass,
band-pass, or band-stop filters for real-time processes.

Parceval’s theorem postulates that the energy in a signal is equal to the result
of integrating the signal squared over time. Taking into account the interrelations
between time and frequency domain, the energy E reads

E:fsz(z)dz=f|5(f)|2df, 4.27)

where |S (f)| denotes the amplitude of the Fourier transform S (f) at frequency f.
Due to the orthogonality of the base functions, |S( f)l2 represents the energy con-
tributed by every single base function component S (f) to the total power of the
signal. Thus, |S ()| is an indicator of the power spectral density (PSD), and com-
monly expressed in dBW. White noise leads to a constant PSD over the frequency
spectrum.

Correlation property
The (cross-) correlation function is defined by

[Se]

R(7) = fsl ®) s2(t + 1) dt (4.28)

—00

and describes the degree of correspondence of two signals s1(¢), s2(¢) as a function
of the time shift 7 between them. The correlation function of two periodic signals,
both with period 7, is defined by

T

R(7) = fsl(t) s2(t +1)dt. (4.29)

0
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Fig. 4.9. Rectangular signal (left), autocorrelation function (center), and
power spectral density (right)

A decreasing correlation coefficient R(7) indicates increasing orthogonality of the
signals, thus, R(7)=0 specifies perfect orthogonality of signals.

If 51(t) = s2(¢), Eq. (4.28) expresses the autocorrelation function (ACF). The
ACF is an even function of 7, i.e., R(—7) = R(1). At zero lag, 7 = 0, the ACF
corresponds to the computation of the energy of the signal (cf. Eq. (4.27)). The
Fourier transform of the ACF of a signal s(¢) corresponds to the PSD of the signal.

Figure 4.9 shows a rectangular pulse in the time domain, its autocorrelation
function, and the PSD of the rectangular pulse; positive and negative frequencies
are shown, as usually applied by convention, and the PSD is halved accordingly
(Brigham 1988). The Fourier transform of the rectangular pulse corresponds to the
sine-cardinal (sinc) function

sin(xf T.)

S(f):TCW

= T,sinc(nf T.), (4.30)
where T, denotes the width of the rectangular pulse, also called chip length. Note
that the sine-cardinal function is infinite in length, i.e., from —co to +oo.

The distribution of the energy of a signal in the frequency spectrum is charac-
terized by the bandwidth parameter. A generally valid definition for the bandwidth
is the distance between the nulls of the mainlobe, which corresponds to a two-sided
bandwidth (Fig. 4.9). Bandwidth B and T are inversely proportional:

2
B=—. 4.31
T. (4.31)

Although most of the energy of a signal is within the frequency band allocated
by ITU, there are also out-of-band frequency components which interact with other
signals. Remember the infinite length of the sinc function. In the same way other
signals interact with the in-band frequencies of a navigation satellite signal. The
level of interference, in-band as well as out-of-band, is strictly regulated by ITU.
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Discriminator function

In terms of GNSS, the satellite signal is correlated with a locally generated signal to
derive, e.g., run time information. Subsequently, for simplification the satellite sig-
nal is reduced to one rectangular pulse, without losing generality. The in-band fre-
quency components of the satellite signal (cf. Fig. 4.10) will be affected by noise n
and in-band interferences i. Out-of-band interference effects are greatly avoided by
filtering all high frequencies. Filtering, furthermore, is necessary to avoid aliasing
effects during analog to digital conversion. These high frequencies, however, cause
the sharp edges of the impulse and of the correlation function. As a consequence,
the correlation function will be deformed by noise and in-band interference and
rounded at the edges due to filter processes, as schematically shown in Fig. 4.10.

Note that notation has changed from the ACF to a general correlation function.
Theoretically, the satellite signal and the locally generated one should be identi-
cal, but in terms of practical implementation they are not, because of, e.g., noise,
interference, filtering.

Detection of the correlation maximum despite of the deformed correlation func-
tion is based on a discriminator function, e.g.,

Ry . R(z+4T)-R(r-4T.)
ar S ARD= dT, .

(4.32)

which is based upon two successive correlation coefficients, also denoted as early
and late, while d on the right sight of Eq. (4.32) denotes the correlation spacing.
Figure 4.10 shows idealized discriminator functions. To find the maximum of the
correlation function is achieved by searching for a null in the discriminator func-
tion.
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Time-delayed indirect signals

If the direct (line-of-sight) signal s,4(¢) of the satellite is overlaid by a time-delayed
indirect signal s,,(?), i.e., multipath signal,

sp(t) = sq(t) + B st + 1), (4.33)

and correlated with the locally generated signal s¢(¢), then the correlation function
reads

T
R, (7)= fs,(t) se(t+ 1) dt
0

T T (4.34)
= fsd(t) se(t+1)dt + f,B Sm(t + Tp) Se(t + 1) dt
0 0
= Ry(7) + Ry(7) .

The separation of R;(7) and R, (7) is not that simple if possible at all; thus, in
general, R,(7) has to be used to search for the null in the discriminator function
(Fig. 4.11). The search result 7 is affected by the time delay 7,,, the damping factor
of the power of the delayed signal $3, and the correlation spacing d. The sharper
the autocorrelation peak and the smaller the correlation spacing, the smaller will
be the influence of the time-delayed signal, and, consequently, the better the time
measurement of the satellite signal propagation. The multipath error is generally
presented as an error envelope by plotting the time delay 7, of one multipath signal
against the signal tracking error 7g.

Narrow correlation spacing is one method to decrease the multipath influence.

\ /TO — AR, (t9) =0
Rim, | |02 AR(m) =0 Ri(ro + 4T,)
r 2 c

Fig. 4.11. Correlation function affected by time-delayed signals
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Another one is the double-delta correlator method, which uses a discriminator func-
tion based on four successive correlation values, thus, decreasing the multipath in-
fluence but increasing at the same time the processing load.

Figure 4.11 shows a multipath signal which is in phase with the direct line-
of-sight signal, therefore denoted as constructive multipath, since it increases the
general correlation result. A destructive multipath signal is out of phase, i.e., the
correlation function is negative compared to the line-of-sight correlation function,
and decreases the correlation result.

4.2.2 Carrier frequency

A number of different frequency band options have been discussed for GNSS sig-
nals (e.g., Spilker 1996a: Sect. 11.B). None of the frequency bands is optimal with
respect to all design criteria; however, the L-band was chosen as the best compro-
mise between frequency availability, propagation effects, and system design. As
mentioned by Hammesfahr et al. (2001) or Irsigler et al. (2002), the C-band pro-
vides better performances with respect to other criteria and might be an option for
future navigation signals. Generally speaking, the higher the frequency, the lower
the ionospheric delays and free space loss, and the higher the antenna gain. Never-
theless, higher frequencies will result in higher atmospheric attenuation, increased
Doppler uncertainty, and more technological constraints.

Modulation methods

Amplitude, frequency, or phase modulations describe a temporal variation of the
respective electromagnetic wave parameter to carry information (Fig. 4.12). Simple
carrier modulation schemes distinguish only between two states of the parameter,
e.g., in case of phase modulation the phase changes between +x and —r per step.
More complex carrier modulation schemes distinguish between several states, thus
transmitting more than one bit per step. Increasing complexity and information
density increases at the same time the interferences susceptibility and bit error rate.

amplitude frequency phase

carrier frequency — |{IWWWWWANAWYY — WARAAAAAAANAANY  AAAAAMAAAARAAAAAN
code /\/\/ /\/\/ ,_\_,_\_l

Fig. 4.12. Modulation methods
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The phase modulation shifts the phase of the carrier by 7 whenever the chip
sequence changes its state from +1 to —1 and vice versa. This modulation method
knows only two conditions of phase shift and is, consequently, also referred to as
binary phase-shifted key (BPSK). The frequency spectrum of the code-modulated
carrier is a simple shift of the code spectrum to the carrier frequency. Apart from
the code, the data bits of the data-link layer are modulated on the carrier. The data
d(t) and code c(f) modulated on the carrier frequency f finally define the satellite
signal s(?),

s(t) = V2P d(t) c() cos(2rf 1), (4.35)

where P corresponds to the power of the signal component. Introducing V2P as
amplitude is a direct consequence of Eq. (4.27) and the fact that power is the amount
of energy transferred per unit time, thus,

T

) 1 9
P= lim —— f s2 () dt . (4.36)
-T

Signal multiplexing

Satellite navigation systems commonly transmit more than one ranging code and
data message on every carrier frequency. The different code sequences are modu-
lated on the in-phase I and m/2 shifted quadrature phase channel Q of the carrier
frequency. Assume two ranging codes modulated on the I and Q channel

s(t) = 2Py c1() di (1) cos2rft) + 2Py c2(f) da(t) sin(2rft), (4.37)

where c1(?), c2(t) denote two different ranging codes and d(¢), da(¢) two different
data messages. Both ranging codes change the phase of the signal in two ways,
therefore a total of four different phase shifts has to be considered, thus, this partic-
ular modulation method is denoted quadrature phase-shifted key (QPSK).

Further assume that the ranging codes c;(¢) and c,(#) themselves are composed
by three other ranging codes c3(?), ca(f), and ¢5(¥) in the form

c1(t) = ay c3(1) + az ca(t) + az c5(1), (4.38)

c2(8) = Brc3(t) + B2 ca(t) + B3 cs(r) . (4.39)

In this way it is possible to modulate several different spreading codes onto the
carrier, depending on the factors @; and ;.

Another method for signal multiplexing is to modulate two ranging codes onto
the carrier frequency following the time division multiplexing method. Thus, one or
several chips of ranging code c; will be followed by one or several chips of ranging
code ¢;. Consequently, the multiplexed code will either have a higher code rate or
a longer code length.
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4.2.3 Ranging code layer

Spectral spreading

A GNSS satellite signal is based on direct sequence spread spectrum modulation.
A carrier frequency, thus, is modulated by a chip sequence, which is composed of
the data message modulated by the ranging code. The ranging code itself consists
of a periodic sequence of rectangular pulses, where the amplitude changes quasi
randomly between the logic levels 0 and 1. These codes are denoted pseudorandom
noise (PRN) codes. The operation of data modulation corresponds to an exclusive-
or (XOR) algorithm, i.e., the binary sum of two states, where a binary O results if
the two states are equal at logic level. The XOR operation corresponds to a multi-
plication if signal levels 1 and —1 are used instead of the logic levels.

Following Fig. 4.9, one chip has a period 7,. The length of the ranging code
sequence T, with N, chips is

T,=N.T, (4.40)

and is sometimes also referred to as code epoch or simply epoch. The reciprocal of
the chip length is denoted as chipping rate or code rate R, = 1/7T, which is propor-
tional to the bandwidth (cf. Eq. (4.31)). The frequency spectrum of a ranging code
looks similar to the one of a rectangular pulse with two major differences. First, the
periodicity of the ranging code causes the frequency spectrum to be discrete. The
interval between the frequency lines is inversely proportional to the period of the
code sequence (Fig. 4.13)

fr= (4.41)

1
T, ’
Second, the finite number of changes between the signal levels causes the spec-
tral lines to slightly deviate from a sine-cardinal envelope given by Eq. (4.30). The

IS ()P 1S ()P
] sine-cardinal
‘H ‘Ii A1 i

envelope
=11, K 2R, 1, K 2R,

Fig. 4.13. Power spectral density of a PRN code (left) and a PRN code modulated by data
message (right) (schematically)
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longer the code sequence and the shorter the period 7, the more will the frequency
spectrum assimilate to the sinc function. Deviations from the envelope are unde-
sired since the interference susceptibility increases and also the requirements for
the linearity of power amplifier increases. For simplification, the PSD of all signals
will be displayed by the envelope only throughout this textbook.

The bit length of the data message T; is generally greater than the period of the
code sequence T',. The frequency spectrum of the data message is (due to its ape-
riodicity) continuous and the bandwidth smaller than the one of the ranging code.
Modulating the data message with the ranging code will create a signal with the
bandwidth of the ranging code but with continuous frequency spectrum while the
spectrum will keep the peaklike shape (Fig. 4.13). In other words, the ranging code
spreads the power needed for data transmission over a wider bandwidth. Thus, the
ranging codes are also referred to as spreading codes, the code chips as spreading
chips.

In terms of data transmission performances, spectral spreading is inefficient.
The transmission of the navigation message, generally requiring frequency band-
widths of 10 to 250 Hz (Misra and Enge 2006: p. 346) to transmit 50 bits per
second, is spread onto a frequency band covering 20 to 50 MHz. The spreading
technique, however, fulfills four tasks, making it indispensable for satellite navi-
gation. Periodic spread spectrum signals enable run-time measurements. Further,
orthogonal spread spectrum signals used by different satellites enable code division
multiple access (CDMA) as briefly described in Sect. 4.2.5. Third, the spreading
and despreading procedure reduces the influence of interferences. Finally, demod-
ulating the data message becomes possible despite of low signal power.

The spectral spread data message d(¢) will be despread in the receiver by multi-
plication of the received satellite signal s(¢) with the locally generated ranging code
c(t). Equation (4.42) describes the spreading operation, whereas Eq. (4.43) shows
the appropriate despreading (bandwidth collapsing) operation in a simplified for-
mulation by neglecting the time dependency:

s=cd, 4.42)

(s+i+nc=c*d+ic+nc=d+ic+nc, (4.43)

where n denotes noise and i interference. This operation relies on the fact that a
squared code sequence will result in a constant signal level

A =1. (4.44)

The data message d(f) collapses to its original bandwidth. In contrast, any interfer-
ence signal, in particular its power, will be spread by the same process as shown in
Fig. 4.14 (Issler et al. 2001).
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received signal s+i+n despread signal: d +ic + nc

i (N7 NOE

E _despread data message d

Fig. 4.14. Spectral spreading (schematically)

Ranging codes

Definition

In mathematical terminology two ranging codes c;, ¢; with noiselike characteristics
have to meet the following ideal requirements (assume signal level +1, —1):

Mic; (0] =Mlc; (D] =0, (4.45)
Mlc; ()] = Mlc; ()] = T, (4.46)
Mlc;(t+7)c; (D] =0  Yi# ], (4.47)
Mlc;(t+7)¢; (] =0  VYrmoduloT, 0, (4.48)

where M] | denotes a mathematical operator defined as the integral over the period
T,. Equation (4.45) characterizes the mean value (balance) of the code sequence.
Equation (4.46) describes the autocorrelation at zero lag. Equation (4.47) defines
the crosscorrelation property, and Eq. (4.48) specifies the values of the autocorre-
lation function for (r modulo 7',) # 0, accounting for the periodicity of the signals.

Assume two satellite code sequences meeting these requirements are correlated
with a locally generated code sequence in the receiver

M|ci(t+11) (ci(t+71) +cj(t+12))| =T, +0. (4.49)

The orthogonality of the different signals enables to isolate one satellite from the
other and to perform time measurements on selected satellites. The second term in
Eq. (4.49), ¢; (t+71) cj (t+72), is the smaller the lower the crosscorrelation between
the two signals is. In an ideal environment the crosscorrelation equals zero. Orthog-
onality and good autocorrelation characteristics are fundamental requirements for
high-accuracy time measurements and good interference mitigation.

Periodic code sequences meeting the requirements of Egs. (4.45) through (4.48)
are called pseudorandom noise (PRN) codes. These sequences have noiselike be-
havior with a maximum autocorrelation at zero lag (7 = 0).
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Code generation

PRN codes for navigation signals are commonly generated using linear feedback
shift registers (LFSR). An LFSR is characterized by the number of register cells
n and the characteristic polynomial p(x), which defines the feedback cells. The
states of the feedback cells of the register are XOR-added and fed back as new
input into the LFSR. The XOR-adders thereby characterize the linearity of LFSR
(Holmes 1982: p. 306). An increasing number of register cells results in a longer
PRN code and in a better correlation property. The maximum length, N,,, of the
PRN code is defined by

Np=2"-1. (4.50)

Therefore, after a maximum of N, states, the PRN code repeats itself. The only
state of an n-bit LESR which will not be generated is the all-zero state. Not all LFSR
have maximal length, thus, the sequence is already repeated before N,, code states.
Holmes (1982: p. 309), e.g., states that LFSR with an odd number of feedback
cells do not have maximal length. A simple example may illustrate the function
of an LFSR consisting of n = 3 register cells and the characteristic polynomial
px) =1+ x! + x3, which defines the cells R; and R3 as feedback cells (Fig. 4.15).
Starting with the initial state 11 1, the bits are shifted to the right at any clock
pulse where the content of the rightmost cell is read as output. The new value of
the leftmost cell is determined by the XOR operation of the two feedback cells.
Following this procedure results in a code sequence 1110100111010011 ...,
where the code repeats after N,, = 7 states. Starting with a different initial state,
e.g., 1 01, will generate the same code sequence but time shifted.

Maximal-length LFSR show excellent autocorrelation property; however, not
all of these sequences have good crosscorrelation characteristics. R. Gold proposed,
as described in Dixon (1984: p. 79), to combine two maximal-length LFSR se-
quences of the same length with good autocorrelation and crosscorrelation property
to generate a great family of nearly balanced PRN codes with excellent correlation
characteristics. Following Gold’s recommendation, codes of length N,, =2" — 1,

register cells
1®1=0 Ry | R | R —— PRNcode:1110100111010011---
190=1
0el=1
0®0=0

XOR

Fig. 4.15. Linear feedback shift register
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Fig. 4.16. Autocorrelation of a PRN Gold code

where n = even and (n modulo 4) # 0, show good correlation property. The level of
crosscorrelation of two Gold codes is given by Holmes (1982: p. 553) as

Ri(r) = 202792 — 1| 4.51)

where k = {-1,0, 1} (Fig. 4.16), a = (n modulo 2), and the chip length has been set
equal to 1.

Beside Gold codes, GNSS signals further apply truncated Gold codes, or codes
that are built by combining codes of different lengths. For example, tiered codes
consist of a long high-frequent primary code XOR-added by a short low-frequent
secondary code. In this way it is possible to combine the advantages of short high-
frequency codes with those of long low-frequency ones. Apart from the LEFSR PRN
codes there is a great number of optimized pseudorandom noise sequences (Hein
et al. 2006b), whereas codes that do not underlie a specific rule of generation are
called memory codes.

PRN sequences are evaluated by computing the maximum absolute crosscor-
relation value, which characterizes the orthogonality of two code sequences. Com-
monly, this value is referenced to the maximum autocorrelation value, whereby the
respective power levels are compared. Assume, for example, a code sequence ¢ (¢)
periodically repeated, i.e., a satellite signal, correlated with one period of a locally
generated code c>(1), both codes having a period T, = N.T.. The output of the
correlation is a signal having constant signal level R(t), where (r modulo 7)) =
constant. The power of this signal (= constant value R*(7)) in relation to the max-
imum power possible (= result of the autocorrelation of ¢,(#) squared) defines the
level of crosscorrelation, thus,

R
M = 10log, (ﬁ

ctc

2
) [dB], (4.52)
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or considering the maximum crosscorrelation of Gold codes

2(n+2—a)/2 +1

) [dB], (4.53)

where N, =N,, and T, =1. The better the orthogonality of two code sequences the
smaller is the level of crosscorrelation.

The ranging code sequences determine important performance characteristics.
The design parameters are above all the code length, the code rate, and the auto-
correlation and crosscorrelation properties. For example, short ranging codes allow
fast acquisition, whereas long ranging codes enhance weak signal tracking perfor-
mance. A high code rate will positively influence the correlation result and, thus,
the tracking accuracy and the interference rejection capability. Short chip lengths
furthermore decrease the influence of time-delayed signals. In contrast, high code
rates cause wide bandwidths, which require a wideband radio frequency circuitry,
fast sampling rates, and a higher processing load. Typical chipping rates are in the
range of megachips per second (Mcps). A careful selection of the random noise
codes is necessary to avoid interferences with other signals using the same and ad-
jacent frequency bands, whilst maximizing the interoperability and compatibility
with other satellite navigation systems.

Code modulation / submodulation

The objective of code modulation (submodulation) is to shape the frequency spec-
trum of the ranging code in order to assign signal energy to dedicated frequency
parts. PRN codes with no additional code modulation are denoted as BPSK sig-
nals. Binary offset carrier (BOC) modulation uses a rectangular subcarrier with
frequency f; to modulate the PRN spreading code of frequency f. (Betz 2002). The
BOC rectangular subcarrier resembles a meander sequence. BOC modulation splits
the power spectral density mainlobe of a BPSK modulation into two sidelobes and

IS(HIP IS(HIP

PRN code BOCs(1,1) .7,
BPSK(1)

G —— Wi

10 =5 |0] +5 +10 10 -5 | 0 | +5 <410 J[MHzZ]
l«— bandwidth bandwidth

Fig. 4.17. Power spectral density of code-modulated ranging codes
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Fig. 4.18. Binary offset carrier modulation

places them symmetrically about the center frequency (Fig. 4.17), thus, also de-
noted as split-spectrum signal. GNSS BOC modulation is commonly referenced to
fo = 1.023 MHz and

1
= = — 4.54
fS I’lf() 2T, > ( )
1 1 2
= = —_— = - 4.55
fo=mfy = = o = 2o @59)

and the modulation is denoted as BOC(n, m). Imitating this notation, signals with
no extra code (sub-) modulation are denoted as BPSK(m). The parameters n and
m define the spectral separation and the shape of the mainlobe about the center
frequency. The factor k = T./T; is a positive integer. If f; = f., the modulation
is referred to as Manchester coding. Additionally, sine-phased BOC (BOCs) and
cosine-phased BOC (BOCc) modulated signals are distinguished depending on the
phase of the rectangular subcarrier (Fig. 4.18). As Ward et al. (2006) mention, the
factor k is a measure of the number of positive and negative peaks in the autocorre-
lation function, e.g., BOCs has 2k — 1 peaks.

The normalized power spectral density of a signal with sine-phased BOC mod-
ulation and k = even is given in Betz (2000) as

2
sin (;T_]{;) sin (7}—{) |

nf cos (ﬂ)

IS Bocsam (I 2 = fo (4.56)

2fs

Normalization is achieved by dividing the power spectral density by chip length
T.. BOC-modulated signals cover different frequency bands with a higher energy
level than BPSK signals. The larger bandwidth of BOC-modulated signals results
in a better tracking performance. Bandwidth is defined here as the bandwidth be-
tween the outer nulls of the two spectral mainlobes. The spectral separation of two
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mainlobes additionally favors interference mitigation. Furthermore, single sideband
processing allows to take advantage of the energy within one mainlobe, even when
the other is disturbed by interference, since both sidebands redundantly contain
the ranging and data information (Betz 2002). The major disadvantage of the BOC
modulation is that the autocorrelation function (Fig. 4.19) has several local maxima,
which means searching for a maximum of the ACF is ambiguous. Note that BOCc
signals in combination with narrow correlators have a higher tracking accuracy due
to the narrower ACF (Fig. 4.19).

A BOC-like modulated signal can be generated by two BPSK modulated sig-
nals. The BPSK mainlobes are shifted from the center frequency to a higher and
lower part, respectively. The two BPSK-modulated signals do not necessarily have
to use the same PRN code. Signals with different PRN codes and generated in this
way are called alternative BOC (AItBOC) modulated signals (Hein et al. 2002).

Different modulation schemes in conjunction with signal multiplexing maxi-
mize the benefits of spectral separation and spectral shaping to improve the sig-
nal tracking performances. Hein et al. (2006a), therefore, presented the method
of multiplexed binary offset carrier (MBOC). The power spectral density of the
MBOC(6,1,1/11), as shown in Fig. 4.20, is given by

w2 10—
ISCHI* = 17 1SBocsa.n(AI” + 77 ISocse.n (DI (4.57)

thus the notation MBOC(6,1,1/11) specifies the combination of a BOCs(1,1) with a
BOCs(6,1) power spectral density, whereby the BOCs(6,1) component holds 1/11
of the overall energy. Note that simple shaping steps in the frequency domain may
lead to more difficult design operations in the time domain. The advantages of the
MBOC design have been highlighted in the discussions in Stansell et al. (2006) and
Gibbons et al. (2006).
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Fig. 4.19. BOCs(10,5) and BOCc(10,5) autocorrelation functions (left) and discriminator
functions (right)
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Fig. 4.20. Power spectral density of MBOC(6,1,1/11)

Pilot signals

Not all signals are composed of ranging code and data message. Pilot signals (pilot
tones) reject the data message. In this way coherent integration (cf. Sect. 4.3.3) be-
comes even possible for very long integration times, thus increasing the sensitivity
of receivers. Very long pilot codes commonly use the principle of tiered codes. The
short primary codes allow a fast acquisition, whereas the long tiered code increases
the sensitivity accordingly. Pilot tones are commonly signal multiplexed with data
signals with similar ranging codes. Consequently, once tracking the tones allows to
more easily acquire the data signals.

Interference — jamming, spoofing, meaconing

The spread spectrum GNSS signal design allows to mitigate a great deal of inter-
ference signals. However, as Spilker and Natali (1996: p. 756) emphasize, even
spread spectrum does not provide sufficient protection against high-power interfer-
ences. Interference is differentiated into intentional and unintentional interference.
To the latter belong out-of-band emissions mainly from other services or in-band
emissions in particular from other systems, both regulated by ITU. Intrasystem
interference denotes interaction of signals from the same system. Intersystem in-
terference, furthermore, specifies the interference of signals of different satellite
navigation systems. The Volpe National Transportation Systems Center (2001) cat-
egorizes intentional interference into jamming, spoofing, and meaconing. Jamming
denotes the operation of drowning the navigation signals in high-power signals to
cause loss of lock and to avoid reacquisition. Spoofing is the operation of emit-
ting legitimate-appearing false signals to shift the computed position solution of
a user. Meaconing is similar to spoofing; however, the signal is not generated but
rebroadcast using received and delayed signals.

Interferences are mitigated using optimized antenna and filter designs to filter
the signal in the spatial, time, and frequency domain. Adaptive mitigation methods
estimate and mitigate time-, frequency-, or space-varying interferences.
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Any intentional interference is unlawful and, as Corrigan et al. (1999) request,
has to be prosecuted.

4.2.4 Data-link layer

The interrelation between code chip duration T, the code length T, and the data
bit duration T is given by

Ts=N,T,=N,N.T., (4.58)

where N, defines the number of the ranging code chips and N,, describes the number
of code epochs per data bit. In combination with information transmission, the chips
of the data message are commonly denoted as bits. The period of the carrier wave
is commonly several times smaller than the chip length of the ranging code. The
bit length of one data bit is commonly again several times longer than the period of
the spreading code. Decreasing data bit duration increases at the same time the data
transmission frequency. Increasing T, in contrast, enhances low bit error rates and
allows signal acquisition in weak signal environments (cf. Sect. 4.3.3).

4.2.5 Satellite multiplexing

The signal design must avoid interferences between signals of different satellites;
in this way the receiver is able to differentiate the signals from various space vehi-
cles. The satellite multiplexing methods exploit the one or the other orthogonality
between signals. Code division multiple access (CDMA) guarantees access to dif-
ferent satellites by using orthogonal code sequences. Due to the characteristics of
the code sequences, CDMA is also denoted as spread spectrum multiple access.
The signals of the different satellites overlap in the frequency and time spectrum.
Frequency division multiple access (FDMA) exploits the spectral separation of dif-
ferent satellite signals. The signals of different satellites overlap in the time and
code domain. Time division multiple access (TDMA) avoids intrasystem interfer-
ence by emitting signals from different satellites at different instances of time.

4.3 Generic signal processing

The satellites generate a signal by modulating a ranging code, according to the spec-
tral shaping scheme, and the data message onto the carrier frequency (cf. Fig. 4.1).
The different signals are then multiplexed and right-handed circularly polarized
emitted from the satellite antennas. The signals emitted are bound by the regula-
tions of ITU. Susceptible out-of-band interferences are either avoided by the sig-
nal design or filtered (Dobrosavljevic and Spicer 2004). The loss of correlation
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thereby is specified in the interface specification documents of the navigation sys-
tems. Misra and Enge (2006: p. 431) describe the transmitted signal to have an
EIRP of 500 W or an effective earthward power of about 25 W. The transmission
loss attenuates the signal power to about 107! W. These signals are finally pro-
cessed in the receiver to derive position information.

4.3.1 Receiver design

Basic concept

The generic GNSS receiver is composed of three functional blocks (Fig. 4.21): the
radio frequency (RF) front-end, the digital signal processor (DSP), and the naviga-
tion processor. The differentiation into the three blocks is based on their functions
and not on the hardware technology. MacGougan et al. (2005) state that an increas-
ing share of the software part up to a pure software-based receiver provides a high
level of flexibility and cost-effectiveness. Nevertheless, a specialized hardware-
software combination highly integrated on a chip will have a higher performance
in terms of throughput. Refer to Tsui (2005) or Borre et al. (2007) for a detailed
discussion of software-based receivers.

The RF front-end receives and conditions the incoming satellite signals, down-
converts them to an intermediate frequency (IF), and an analog to digital (A/D)
converter samples the signals. The RF front-end further implements the frequency
standard, which provides the reference frequencies and timing information.

The DSP correlates the locally generated signals with the satellite signals and
provides the observables, i.e., code ranges, carrier phases, and Doppler frequencies,
as well as the navigation data streams. The observables are in principle by-products
of the tracking loops.

The navigation processor decodes the navigation message to gain time, ephe-
merides, and almanac data and finally computes position, velocity, and time (PVT)
information. All three functional blocks of the receiver exchange information to
increase the performance.

antenna y \ y v
radio frequency digital signal navigation
front-end processor processor
L code range L position
carrier phase velocity
Doppler frequency time

Fig. 4.21. GNSS receiver functional blocks
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Signal-to-noise ratio

The noise is generally described using a temperature equivalent parameter, the ther-
mal noise. Thermal noise, which, as Langley (1997) emphasizes, is not the actual
physical temperature of the receiver, indicates the motion of electrons in the re-
ceiver circuitry. Thermal noise is commonly assumed to be white and Gaussian
distributed. The noise power density Ny reads

No=kT [WHz '], (4.59)

where k = —228.6dBW K~! Hz™! defines the Boltzmann constant and T is the
temperature equivalent given in kelvin (K). The (thermal) noise power N is the
product of noise power density Ny and bandwidth B, processed by the receiver
(Butsch 2002):

N=NyB,=kTB, [W]. (4.60)

The noise power density of a typical receiver is in the order of Ny = —201 to
—204 dBW Hz ™! (cf. Ward et al. 2006: p. 263; Langley 1997).

The signal-to-noise ratio (S/N) describes the performance of a functional block
by relating the signal power P to the noise power N:

P
S/N = 101log;, T [dB]. (4.61)

The carrier-to-noise power density ratio C/N is a bandwidth-independent index
number that relates the (carrier) power to noise per 1 Hz bandwidth

P
C/Ny = 101og,, Vo [dBHZz] . (4.62)

Whereas S/N is generally used in conjunction with signals at baseband after de-
spreading operations, C/N, is more commonly used to quantify the signal power
P, of the received signal (Langley 1997). Carrier-to-noise power density ratios be-
low 34 dBHz characterize weak signals.

The minimum received signal strength is defined to be in the order of —160
dBW (e.g., ARINC Engineering Services 2006a). Inserting this power level into
Eq. (4.61) and taking the noise power N for a signal bandwidth of 2 MHz according
to (4.60), the S/N becomes negative, i.e., the signal is drowned by noise, thus, not
detectable by spectrum analyzers. Only the overlay of several signals from different
satellites and higher power levels than the minimum specified will increase the
combined signal power above the noise level (Borre et al. 2007: p. 65).

The correlation of the satellite signal with the locally generated signal de-
spreads the data signal and thereby increases the power level (Fig. 4.14). This
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spread signal design is one reason why GNSS receivers can use small, omnidi-
rectional antennas rather than large dish antennas.

The receiver correlates the incoming signal with a signal replica. The corre-
lation result, taking into account the power of the replica, is proportional to the
incoming signal power (4.24), thus it can be used to estimate the signal power.
Butsch (2002) further emphasizes that an estimate of the noise power can be derived
from the mean squared deviation of the correlation result over time. Dixon (1984:
p- 10) emphasizes that the difference in output and input S/N of any operation is
denoted as processing gain and processing loss, respectively.

4.3.2 Radio frequency front-end

Antenna design

Antennas receive the satellite signals, transform the energy of the electromagnetic
waves into electric currents, and forward them to the RF front-end, while rejecting
multipath and interference signals as far as possible. In general, the antenna gain
is a function of azimuth and elevation. Omnidirectional antennas, however, have a
uniform antenna gain pattern in all directions. Such antennas are generally used in
GNSS applications. For static applications, the gain is limited as far as possible to
the upper hemisphere by using, e.g., ground plane or choke ring design, rejecting
signals coming from below the horizon, therefore rejecting signals reflected from
the ground. Other applications, e.g., marine applications, require a uniform gain
pattern also below the horizon to compensate for rolling and pitching of the ship.
As mentioned in Sect. 4.1.1, some reflected signals may change the polarization
from RHCP to LHCP. Antennas are commonly designed to have low gain for LHCP
signals. Figure 4.22 shows schematically the antenna gain in polar coordinates.
The controlled reception pattern antenna (CRPA) technology combines several
antenna elements to an array to exploit beam forming, beam steering, and null steer-

satellite signal %

- interference
multipath -~ R
signal ..,

150° 180°

Fig. 4.22. Antenna gain pattern (left) and the influence of beam forming,
beam steering, and null steering (right) (schematically)
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ing techniques (Fu et al. 2001). In this way the gain is adaptively maximized toward
satellite signals, and minimized to any other interfering signal source (Fig. 4.22).

Active antennas implement preamplifiers which integrate burnout protection
elements, frequency filters, and low-noise amplifier (LNA) components. Filtering is
accomplished based upon a trade-off of out-of-band rejection and signal distortion
(Fig. 4.10).

Reference oscillator

The frequency standards of the receivers, commonly based on quartz crystal local
oscillators (LO), do not provide the same high level of stability as the atomic clocks
in the satellites. Although the time offset to GNSS time is introduced in the obser-
vation equations as a fourth unknown, the oscillators must meet short-time stability
requirements to enable high satellite acquisition and tracking performance. Fur-
thermore, the reference oscillators should have low sensitivity to vibration or high
dynamics and have low phase noise.

Radio section

Incoming satellite signals are amplified by an LNA, filtered by a band-pass fil-
ter (BPF), and downconverted to IF using a frequency mixer. The signal is fil-
tered again and high-power signal parts normalized by the automatic gain control
(AGC) before the analog to digital (A/D) converter samples the signal. Although
this generic design (Fig. 4.23) is common to a vast majority of receivers, all of them
employ different strategies and different frequency plans to optimize the receiver
design on user requirements in trade-off of the complexity and cost. Every addi-
tional filtering and downconversion step reduces out-of-band interferences without
in-band distortions, thereby minimizing aliasing effects in the subsequent A/D con-
versions. However, every intermediate step adds additional noise power.

.- frequency bands
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Fig. 4.23. Generic radio frequency front-end functional block diagram
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Fig. 4.24. Signal processing steps displayed in the power spectrum

Navigation signals of two separated frequency bands are processed using ei-
ther one very wideband RF front-end or two completely separated, but in principle
identical, signal paths.

Intermediate frequency

Downconversion is a simple shift of the frequencies in the frequency spectrum.
This is accomplished by mixing the incoming signal centered on the frequency f,
with a locally generated pure harmonic signal f; (Wells et al. 1987: p. 7.07). The
mathematical formulation corresponds to

cos(2nfyt) cosnfit) = % [cos 2n(f,+ fr) 1) + cos Ca(f,—fr) 1)] .
(4.63)

The term fir = f — f;, referred to as intermediate frequency (IF), corresponds
to the downconverted part of the signal. The upconverted (high-frequency) part,
[y + fr, s filtered using, e.g., a band-pass filter as illustrated in Fig. 4.23. Frequency
mixing shifts the frequencies in the electromagnetic spectrum; however, it does not
influence the phase shift and the frequency dependent Doppler shifts in the code
sequence (cf. Fig. 4.24).
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Not all receiver designs use the concept of intermediate frequency. Some down-
convert directly to zero or near zero frequency, respectively, i.e., down to baseband
(fe=fr = fir=0). Baseband denotes the frequency band occupied by a demod-
ulated signal (Langley 1997). Other IF concepts do not use any downconversion at
all but discretize the signals directly.

Signal amplification

The power levels of the received signal are normalized to a reasonable level to facil-
itate the signal processing. Signal amplification to a normalized level is performed
by the AGC. Holmes (1982: p. 105) mentions that the AGC avoids circuitry sat-
uration and damage. The AGC receives information about the power level by the
correlators in the DSP. Blanking elements may suppress any pulse-type high-power
interference before the signal is amplified (Giraud et al. 2005).

Analog to digital conversion

The A/D converter discretizes the incoming analog signals in time (sampling) and
in magnitude (quantization). The minimum sampling rate is defined by the Nyquist
(Shannon) theorem. The out-of-band frequencies that are not filtered in advance are
aliased into the in-band frequencies (Oppenheim et al. 1999: p. 86), consequently
increasing the noise level.

Typically, sampling rates of 2 to 20 times the PRN code chipping rate are used
(Dorsey et al. 2006: p. 108). One-bit quantization would generally be sufficient for
signal acquisition and tracking, higher quantization levels (e.g., 2-bit or 4-bit), how-
ever, show a better signal-to-noise ratio and furthermore decrease the susceptibility
to interference. The statistical distribution of signal and noise and the averaging
process during the correlation algorithms counteract the signal distortions intro-
duced by the quantization. Borre et al. (2007: p. 62) estimate the signal distortion
of a 1-bit quantization to be less than 2 dB.

Although the satellite signals after the A/D conversion are discrete s[n], the sig-
nals are still represented using the continuous form s(¢) for all following operations
to express their general validity.

4.3.3 Digital signal processor

In the first step of the digital signal processor (DSP) functional block, the signal
is split into a number of channels. Every channel outputs code ranges, range rates,
time tag information, the navigation data message, and affiliated information like
the S/N. High-end receivers also perform phase measurements in the channels. The
generic signal processor functional block diagram (Fig. 4.25) shows one possible
realization.



4.3 Generic signal processing 91

.- satellite channels

phase code

RF front-end I ” navigation
Q S DLL processor

g PLL

NCO| [Nco=—| £ FLL

2 data

| S I <
DSP Il

Fig. 4.25. Generic signal processor functional block diagram

Channel multiplexing

An increasing number of channels increases the requirements of the hardware com-
ponents and circuitry. Older receivers used a limited number of channels to save
power and cost. The satellites have been tracked by sequencing the satellites on the
same channel. Parallel or continuous receivers increase the performance by assign-
ing every satellite signal to a dedicated channel. Meanwhile the number of channels
corresponds to the maximum number of visible satellites multiplied by the number
of frequencies and ranging codes processed. Multichannel receivers however have
to calibrate interchannel timing biases, which would otherwise deteriorate the po-
sition solution.

Acquisition and tracking

The very first time a receiver is switched on, it neither has information about its
position nor about the approximate time, nor about the position of the satellites.
The receiver has no information which satellites are in view. The receiver starts a
sky search by analyzing the input signal with respect to all known satellite rang-
ing codes. If the receiver has been initialized before, it generally uses almanac and
ephemerides, the approximate user position, and approximate time estimate to pro-
vide aiding information in form of estimated Doppler shift and estimated time shift
to the tracking loops. Depending on the availability of the information, four differ-
ent acquisition modes are distinguished: cold start, warm start, hot start, and reac-
quisition. No information is available in cold-start conditions (sky search). Warm
start relies on almanac, user position, and time estimation. Hot start, in contrast,
relies not only on almanac but also on ephemerides data. Reacquisition is the pro-
cess when satellite signals have just been lost and are acquired again, therefore the
receiver has good knowledge of time and Doppler shift.

The core element of the receiver is the correlation between the received signal
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and a locally generated replica. The input signal s(#) to the DSP channels consists of
a superposition of signals from different satellites, multipath signals, interferences,
and noise. In a simplified form the signal reads:

k
s(t):Z s, (t+T)+n@)+i(D) =
r=1

k
=) V2Per(t+7)dp (t+ 7)) cos Qa(f* = fo + At + 7))
r=1
+n()+i(),
(4.64)

where n denotes white Gaussian noise, i represents interference, A f; the frequency
offset, and 7, the code delay. The identification of one dedicated satellite signal
is performed by searching for the maximum of the autocorrelation function (cf.
Eq. (4.29)). The crosscorrelation, consequently, works like a filter for all other
satellite signal components (cf. Eq. (4.49)). At the same time the data message
is despread (cf. Eq. (4.43)).

The process of searching the maximum correlation is denoted as acquisition.
The subsequent process of following the maximum over time defines tracking. As
soon as the search process has been successful and the receiver tracks a specific
satellite, its signal is called to be locked. The acquisition and tracking processes are
closely related. For acquiring satellites, the C/N has to be a few dB higher than for
tracking (Hein and Issler 2001).

Acquisition consists of a two-dimensional search of all possible combinations
between frequency offset Af and code delay 7. Concentrate for the moment onto
one particular signal neglecting interference and any noise figure. The code delay
and frequency offset of this signal are denoted by Tpax and A fnax, whereby both are
a function of time and not known a priori. The correlation result between this signal
and a locally generated one depends on the code delay 7 and frequency offset Af
of the locally generated signal. The code delay is a function of satellite signal run
time. A signal emitted from a satellite in zenith with an altitude of 20 000 km will
have a run time of about 70 ms. The ranging code period should be longer than the
maximum run time in order to unambiguously resolve the range. If the ranging code
period is shorter, the ambiguity can be solved by an approximate user position, by
Doppler measurements, by considering the data message reception time of different
satellites, or by other means.

The intermediate frequency fir = f* — fr + Af is a function of the locally gen-
erated harmonic, the relative user—satellite motion (Doppler shift), any sort of fre-
quency instability of the receiver and satellite frequency standard, and some other
effects, like relativity or atmospheric scintillation. Since f* — f; is known a priori,
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Fig. 4.26. Correlation results as a function of the time delay and frequency offset

the remaining frequency offset corresponds mainly to the Doppler shift. Thus, the
frequency offset is sometimes referred to as Doppler offset.

Figure 4.26 shows an excerpt of the normalized autocorrelation results R(t, Af)
as a function of Af and 7. Consider that the receiver does not compute R(r, Af)
at one epoch for all combinations of Af and 7 as shown in Fig. 4.26, and then
searches for the maximum. But for reasons of practical implementation, the receiver
computes one R(t, Af) value and decides whether a maximum has been found or
not, i.e., whether the threshold has been met.

The receiver does not necessarily need to search for the frequency offset, i.e.,
track the carrier to resolve code ranges (code delays). However the carrier phase
adds increasing accuracy. The combined code and carrier tracking technique is
called carrier-aided or coherent tracking. Note that signal waves and waveforms
with constant phase difference are denoted coherent. Aiding information from an
external source is necessary if the carrier is not tracked. As Ward et al. (2006:
p. 154) state, in the case of noncoherent tracking, the frequency response roll-off
characteristics will attenuate the code correlation result. Ward et al. (2006: p. 154)
further emphasize that a receiver that loses phase lock, subsequently loses code
lock. Note that carrier measurements need a higher technical expenditure than it is
generally needed for carrier tracking.

The frequency offset and code delay of the locally generated signal are varied
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according to a defined search pattern until the correlation coefficient meets a pre-
defined threshold. In the next step, the coarse global search is replaced by a fine
local search algorithm. The practical implementation of a correlation function cor-
responds to a multiplication of the two signals followed by an integrate and dump
function. Dwell time denotes the time needed to compute one integration result.
Considering Fig. 4.26 and Eq. (4.64), it should be evident that any nonorthogo-
nality between the signal replica and any other satellite signal or interferer will
cause several correlation peaks. In addition, very strong signals generate high-level
crosscorrelation peaks, thus influencing the tracking capabilities of weak signals.
A second peak above the threshold in the frequency-code-shift domain may lead to
false lock and, therefore, to wrong range measurements.

The search space is commonly snooped for a correlation result using a regular
search grid. The number of grid cells is defined by the increments in frequency
A fgria and in time Atgiq. The increments in the frequency and the time space have
to be fine enough to detect any correlation peak. An increasing density will increase
the probability also to identify weak signals; consequently, the sensitivity of the re-
ceiver is increased. However, the acquisition time increases with the density. The
increments in the time space depend on the code modulation, e.g., for BPSK modu-
lated signals, typically 1/2 chip length search intervals are used. Wilde et al. (2006)
show that for BOCs(1,1)-modulated signals three times as many search intervals
have to be used compared to BPSK modulation, thus, 1/6 chip length, to guarantee
a similar level of average crosscorrelation. The increments in the frequency space
are, for example, Afoia = 1/(2Tgwen) kHz, where Tywen corresponds to the dwell
time in milliseconds.

Frequency offsets of + 6 to + 12 kHz have to be accounted for, where + 5 kHz
are induced by satellite motion, the rest by user motion and local oscillator drift.

Take as an example a short Gold ranging code of one millisecond length and
composed of 1023 chips. The dwell time for one correlation result, thus, corre-
sponds to 1 ms. Searching in 1/2 code intervals will result in 2046 correlation re-
sults. Therefore 2046 ms of search time are needed in the code delay range. In
addition, assume A fyrig = 500 Hz and a frequency offset range of 12 kHz resulting
in 24 correlation results (= 12 000/500) in the frequency offset range, finally end-
ing up with 49 104 correlation coefficients. In this example, acquisition would take
a maximum of 49 seconds. It should be evident now that every channel relies not
on a single correlator but rather on numerous to decrease acquisition time.

An increase of search speed can also be achieved by applying other strate-
gies, e.g., exploiting the duality of time and frequency domain. Borre et al. (2007:
Chap. 6), e.g., discuss the frequency search space concept or the parallel code phase
approach.

Lock detectors compare the correlation result with the threshold to take out the
decision whether a maximum has been found. Short code sequences or, more gen-



4.3 Generic signal processing 95

=— T4 — data phase changes

data message | | | |
ranging code | | |_||_|
satellite signal | | |
locally generated ‘ ‘ |
ranging code 1 epoch 2 epochs 3 epochs

R(™)

+1
0 T, v integration time

data bit length

Fig. 4.27. Normalized correlation result roll-off as a function of integration time

erally, short integration times will result in high local maxima. Remember that the
level of maximum crosscorrelation is a function of code length. Additionally, short
integration times will be more affected by noise. The effect of Gaussian distributed
noise can be reduced by using several code periods for computing the integration
result; however, this will not decrease the level of crosscorrelation of the same
ranging codes of different satellites.

Short integration times together with a low threshold increase the probability of
false acquisition, i.e., identifying a local maximum as global maximum. The thresh-
old can be increased; however, this will at the same time decrease the sensitivity
of the receiver. Recall that the correlation result (4.29) and (4.64) is also a function
of signal power; thus, weak signals will cause low correlation results. Long code
sequences accumulate a great deal of signal energy, thus, positively influencing the
correlation results. However, within this long integration time, the Doppler and the
code delay will change. The integration result, hence, corresponds to a “smeared”
average.

As already mentioned, the ranging code length and therefore the integration
time can be lengthened by using more than one code epoch at a time (Fig. 4.27).
Coherent integration time denotes any integration time where no data phase tran-
sition occurs. Assume a ranging code length of 1 ms and a data rate of 50 Hz,
then a maximum of 20 ranging code epochs can be used for coherent integration
(in Fig. 4.27 two have been used for simplification). This requires, however, the
integration interval to be synchronized with the data phase transition. Noncoherent
integration methods are used to lengthen the integration time while avoiding effects
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of the data phase transition onto the integration result. The concept of noncoherent
integration is to integrate over coherent time epochs, square the results, and sum
them. The squaring process eliminates the data phase transitions but, as a trade-
off, doubles the noise power. Nevertheless, the performance of long noncoherent
integration time is generally better than the one of short coherent integration time
intervals. Other methods to increase the correlation time without being affected by
the data phase transition rely on wiping off the data bits in advance. This could be
done either when the data chips are known or estimated (navigation messages do
not change rapidly), or received from an external source.

Tracking loops

The receiver, actually, generates two realizations of the reference carrier frequency
and three realizations of the ranging code that are correlated with the satellite sig-
nal. The two realizations of the carrier are 90° phase shifted and are called in-phase
and quadrature phase signals. The respective steps in the receiver are the 1/Q oper-
ations. These operations are necessary since the phase of the incoming signal is un-
known. Even if the incoming signal and the locally generated carrier have the same
frequency but are out of phase, the integration result will decrease as a function of
phase shift. This is also called amplitude fading or energy loss. Counteracting this
effect, the received signal is correlated with two 90° phase shifted locally generated
signals. The correlation result is summed up accordingly. This preserves the energy
in the correlation result.

Receivers will generally align the generated carrier in the I channel to the phase
and frequency of the satellite signal. This allows in the follow-up data demodulation
to sense data phase transitions by only considering the output of the I channel.

The locally generated (harmonic) carrier that is mixed with the satellite signal
shifts the frequency spectrum of the signal to zero frequency (Fig. 4.23d). This
is a similar operation as during the IF downconversion. If the frequency of the
harmonic and the carrier frequency of the IF signal match, then the carrier is called
to be wiped off and the signal is in baseband. This operation and the following
operations, thus, are commonly denoted as baseband processing.

The three realizations of the ranging codes are time shifted by the correlation
spacing to provide an early (E), prompt (P), and late (L) correlation result. The
early and late correlation coefficients in the in-phase and quadrature phase branches
(Ig, I, O, Qr) are only used for the code tracking loop. The prompt correlation
result (Ip, Qp) in contrast is also processed in the carrier tracking loop.

Note that the prompt values have been used before for the acquisition algorithm.
The sum of the squares of the integration results in the I and Q path (112, + Q%,) are
used by the lock detector to determine the correlation between incoming signal and
replica. The sum expresses at the same time the average signal power which is used
for S/N estimation and which is used by the AGC. As soon as the lock detector
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Fig. 4.28. Tracking loops

confirms acquisition, the feedback control loops track the carrier and code.

A phase lock loop (PLL) tracks the carrier phase while providing at the same
time the navigation data bit transitions. The delay lock loop (DLL) continuously
adjusts the code replica to the satellite signal. The tracking loops must accommo-
date any satellite and vehicle dynamics which change the Doppler shift and the
code delay and any other frequency offset. The alignment of the generated signal to
the incoming one is done in the DLL and PLL in parallel, therefore the two loops
are closely interlocked.

Carrier tracking loop

Neglect for the moment the ranging code and data message. The satellite signal
is split into the I and Q branches, one multiplied with the carrier phase as output
by the carrier generator, the other multiplied by a 90° phase shifted carrier. If the
frequency of the generated signal and the incoming one coincide, the carrier will
be completely wiped off, and the center frequency fir of the resulting frequency
corresponds to zero (Fig. 4.24d). Any deviation between generated frequency and
incoming one is a measure of the remaining Doppler shift and will result in a beat
frequency and a beat phase

Aper = @r — @, (4.65)

where ¢, corresponds to the phase of the generated carrier frequency, ¢, to the one
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of the satellite signal as it is output by the RF front-end (Fig. 4.29).

The process of carrier wipe-off is based on the principle given in Eq. (4.63). The
high-frequency component is filtered using a low-pass filter. The low-pass filter is
a simple integrate and dump operation resulting in the variables Ip and Qp. Finally,
the carrier loop discriminator function computes the phase shift. The output of the
discriminator function is filtered in the carrier loop noise filter, which in particular
characterizes the phase lock loop behavior and tracking accuracy. The carrier loop
filter analyzes the beat phase and extracts the remaining frequency offset as well
as the remaining phase shift between satellite signal and I channel harmonic. A
wide filter bandwidth will be useful for high dynamics; thus, fast frequency offset
changes can be accommodated. A high bandwidth, however, increases the noise
level. Different loop designs have been constructed to optimize the performance for
user requirements. The numerically controlled oscillator (NCO), which is driven by
the output of the carrier loop noise filter, finally controls the carrier generator. This
procedure closes the loop. Carrier wipe-off is an iterative process which, due to
changing Doppler shift, has to be performed continuously. The carrier generator
setting is a measure of the Doppler shift.

Any data phase transition will cause a 180° phase shift within the PLL. The
Costas loop is one realization of the PLL, with the additional feature of being in-
sensitive to any 180° phase shift. In principle, the discriminator function of the
Costas loop takes the output of the integrate and dump filters squared, what causes
the frequency to double, the noise to increase, but also to eliminate the data phase
transitions.

Commonly used carrier phase discriminator functions, without being exhaus-
tive, are the decision-directed discriminator, the dot-product discriminator, or the
arctangent discriminator (Ward et al. 2006). The latter is defined by

D, = arctan (&) . (4.66)
Ip

If the discriminator function outputs phase changes over time (= frequency) in-
stead of phase, the PLL transfers into a frequency lock loop (FLL). Misra and
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Enge (2006: p. 483) mention that the FLL may be applied for coarse frequency
tracking before applying the more accurate phase lock loop.
The error (10) of the phase lock loop is given by

A |Bpr N N,
OpLL = — 4|0y 1O [m], (4.67)
2 P,

2P, T;

where A is the wavelength of the satellite signal carrier, Bpr 1 is the single-sided car-
rier loop noise bandwidth of the carrier loop noise filter given in hertz, T; denotes
the coherent (predetection) integration time (Langley 1997). The Radio Technical
Commission for Maritime Services (2001: Appendix B) emphasizes that the error
induced by the phase lock loop is driven by the signal-to-noise ratio, not by other
errors such as multipath, ionospheric errors, or even receiver-specific characteris-
tics like quantization level. A decreasing carrier loop noise bandwidth decreases
the error level; however, at the same time the loop is too inert to follow any high
dynamics of the receiver or other means of phase scintillations. Stationary receivers
use a bandwidth of 2 Hz or even less (Langley 1998: p. 182). Borre et al. (2007:
p- 93) emphasize that for land applications, bandwidths of 20 Hz are common. One
method to use a small bandwidth but to have a good performance in high dynamic
environments is to use aiding information from, e.g., an inertial measurement unit.

The second part in the parentheses of Eq. (4.67) expresses the squaring loss and
can be neglected if no data is on the satellite signal (pilot signal) or the data can be
wiped off by other means.

Langley (1998: p. 182) assumes, for example, a carrier-to-noise density ratio of
45 dBHz, a carrier loop noise bandwidth of 2 Hz, a wavelength of 0.2 m, and an
integration time of 1 ms, then the carrier loop tracking error is 0.2 mm.

Code tracking loop
Likewise to the PLL also the DLL differentiates between in-phase and quadrature
phase components in order to preserve the energy in the signal.

Already mentioned in Sect. 4.2.1, the exact shape of the correlation function is,
due to noise, restricted filter design, etc., unknown, therefore the concept of a dis-
criminator function using a correlator spacing d is applied. Standard correlators use
a correlation spacing of one chip. Narrow correlators reduce the correlation spac-
ing to, e.g., 0.1 chips. In this way the noise figures are reduced due to their higher
temporal correlation and the influence of multipath effects as shown in Fig. 4.11 is
reduced as well.

The code discriminator functions are designed to avoid influences of phase shift
induced by data phase transitions. A simple coherent DLL discriminator is

D = (Ig - Ip) sign(Ip), (4.68)
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where sign(/p) corresponds in particular to the data message bit modulation, as long
as the carrier phase is coherently tracking. Noncoherent discriminators eliminate
the data phase transitions using squaring techniques, e.g., early-minus-late power
discriminator or the dot-product discriminator that reads

Dy =g = 1)Ip +(Qg — O1)0p . (4.69)

The output of the discriminator function is filtered in the tracking loop filter and fed
back into the NCO. The relative user—satellite motion-induced Doppler influences
the code sequence according to (4.13) in dependence of the code rate. For example,
a code rate of 1.023 MHz will cause a Doppler shift of 3.4 Hz (v, ~ 1000 ms™1).
This influence creates a dynamics-driven discriminator output. The output of the
carrier loop filter is scaled and used in the code tracking filter to eliminate the user—
satellite dynamics (Langley 1998). The carrier loop filter estimate of the dynamics
is more accurate and, therefore, preferably used in the code loop filter. The rate-
aided code loop (Misra and Enge 2006: p. 479), also denoted as carrier-aided code
loop (Ward et al. 2006: p. 162), allows to use low code loop bandwidth and, thus,
low noise in the code measurement. The remaining dynamics in the code loop is
ionospheric and noise induced.

The DLL tracking becomes more fragile when considering BOC-modulated
ranging codes and their ambiguous discriminator function. There are different con-
cepts to avoid false tracking. One of them is to track only one sidelobe of the BOC
frequency spectrum, consequently neglecting half of the energy in the signal. A
method which takes full advantage of the BOC energy spectral spreading is the
bump and jump technique, relying on two more correlators, a very early and a very
late correlator. Refer to, e.g., Julien et al. (2004b) or Julien (2005) for further dis-
cussions of unambiguous BOC tracking.

The DLL tracking error, assuming no remaining Doppler offset, is estimated us-
ing the received power P,, the noise density Ny, the equivalent single-sided tracking
loop bandwidth Bpy 1, of the tracking loop filter, the coherent (predetection) integra-
tion time 77, and the correlation spacing d. The mathematical model presented here
follows Dierendonck (1996: p. 373) and the Radio Technical Commission for Mar-
itime Services (2001: Appendix B), respectively:

Bpri. Nod 2Ny
=cT, 1 s 4.
OpLL = C \/ 2P, ( + a-dpP, TI) [m] (4.70)

where opy | corresponds to the estimated tracking error (107) of a BPSK-modulated
signal using a noncoherent early-minus-late power discriminator. The speed of light
is denoted by ¢, T, defines the chip length in seconds. The higher the tracking loop
bandwidth Bpyr the faster the DLL synchronizes to the satellite signal. However,
the increasing bandwidth increases the noise level. If an additional smoothing filter
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is placed after the tracking loop filter, Bpy has to be replaced by this filter band-
width (Radio Technical Commission for Maritime Services 2001: Appendix B).
Sleewaegen et al. (2004) present a more general formulation for BPSK, BOC, or
AItBOC modulation assuming solely pilot tracking and a dot-product power dis-
criminator. Minimum tracking errors are commonly described by the Cramer—Rao
lower bound as given in Spilker (1996a: p. 111).

Codeless receivers

For security reasons, the navigation service providers do not publish all ranging
codes. In some cases only the original ranging code is known, but the encryption
method is defined only in classified interface control documents. Methods have
been developed to use signals with encrypted ranging codes. Without losing gen-
erality, denote the known ranging code by P, the encryption regulation W, and the
encrypted ranging code as Y =P W. The frequency of W is assumed to be lower
than the one of the P-code. Further assume that the ranging code may be modulated
onto two carriers with frequencies f; > f>.

Four methods are distinguished: the codeless and the quasi-codeless methods,
which themselves are differentiated into squaring and crosscorrelation techniques
(Lachapelle 1998). All four approaches suffer from a substantial degradation in the
S/N. Figure 4.30 summarizes the characteristics of the four techniques. The graph-
ical diagrams are adapted from Ashjaee and Lorenz (1992) and Eissfeller (1993).

The squaring technique was first presented in 1981 by C. Counselman. The
received signal is mixed with itself and, hence, all modulations are removed. The
result is the unmodulated carrier with twice the frequency and, thus, half the wave-
length. The S/N is substantially reduced in the squaring process (Ashjaee 1993).

The crosscorrelation technique is another codeless technique which was first
described in 1985 by P. MacDoran. The technique is based on the fact that the
unknown Y-code is identical on two carriers which enable crosscorrelation of the
/1 and f, signal. Due to the frequency-dependent propagation of an electromagnetic
wave through ionosphere, the delay between f; and f> has to be taken into account.
The observables resulting from the correlation process are the time delay which
corresponds to the range difference between the two signals, and a phase difference
D, — Dy

The code correlation plus squaring technique was patented by Keegan (1990).
The method is also denoted code-aided squaring and involves correlating the re-
ceived Y-code on the f> signal with a locally generated replica of the P-code. This
correlation is possible because the Y-code originates from an XOR sum of the P-
code and the encrypted W-code. Since the chipping rate of the W-code is less than
the frequency of the Y-code, there always exist Y-code portions which are identical
to the original P-code portions (Eissfeller 1993). After the correlation, a low-pass
filter is applied to limit the bandwidth and, subsequently, the signal is squared to
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Fig. 4.30. Codeless techniques

get rid of the code similar to the procedures in the tracking loops to free the data
bits. The technique provides code range and, because of squaring, half wavelength
carrier phase.

An improved quasi-codeless technique is denoted Z-tracking™ and has been
reported in Ashjaee and Lorenz (1992). The Y-code on both the f] and f;, signal is
separately correlated with a receiver-generated replica of the P-code. Since there is
a separate correlation on fi and f,, the W-code on each frequency is obtained. The
subsequent low-pass filter allows to estimate phase-bit of the remaining W-code.
This estimate is used in the f;, f> path mutually to eliminate the W-code. There is
no need to know the W-code because it is only used for synchronization purposes
(Breuer et al. 1993). The removal of the encrypting code leads to the same signals
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as in the case of unencrypted signal processing. Thus, the code ranges and full
wavelength carrier phases are obtained.

4.3.4 Navigation processor

The navigation processor fulfills three main tasks. The result of the data demodu-
lation process is used to decode the navigation message and compute satellite po-
sitions. Secondly, the code, phase, and Doppler measurements are used to compute
position, velocity, and time information. The third task of the navigation proces-
sor is to provide aiding information to the tracking loops and to the filters. The
time needed for a GNSS receiver between power up and providing the first position
information is denoted as time to first fix (TTFF).

Data demodulation involves three operations: symbol synchronization, frame
synchronization, and message decoding. Carrier-aided tracking systems wipe-off
the code and carrier from the signal, therefore the remaining absolute phase changes
between +m and — correspond to the data symbol transition. These phase changes
are detectable by analyzing sign(/p), if the generated I-channel carrier has been
aligned to the incoming signal (coherent tracking). The bit synchronization oper-
ation, thus, senses any sign changes of the prompt correlation values. Frame syn-
chronization is accomplished using a well-known data bit sequence (preamble) of
the message, which is periodically transmitted. The receiver additionally checks
the frame length, the parity, and any other deterministic or predictable information.
The navigation message decoding that follows, optionally performs block deinter-
leaving, forward error correction, deciphering, and finally recovers the data bit train
of the original message. The exact process varies with the different messages of the
various systems and services. The different error correction encoding methods are
implemented to increase the reliability of data transmission and reduce the bit error
rate.

One concept applied for nearly all modernized and future GNSS signals is the
half-rate convolutional encoding and decoding. Therefore, the symbol rate in sym-
bols per second (sps) is twice the original data rate in bits per second (bps). The
convolutional coding is characterized by the characteristic polynomials G; = 171
and G, = 133, both in octal notation (cf. Fig. 4.31). The octal number of G trans-
forms into the binary number 001 111 001, which, neglecting the first two zeros,
defines the polynomial p(x) = 1 + x! + x> + x> + x* + x’. The polynomial of G,
is coded similarly. Holmes (1982: p. 264) denotes the resulting code as optimal
nonsystematic convolutional code. At every clock impulse one bit is fed into the
convolutional encoder and two symbols G, G, are output (Holmes 1982: p. 251).
The output symbols have twice the rate as the input bits. Thus, this convolutional
encoding scheme is denoted half-rate.

In the block interleaving process, the bits and symbols respectively fill up a
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Fig. 4.31. Convolutional encoder

matrix column by column. The symbols, in the sequel, are transmitted row by row.
Assume that a sequence of more than one symbol is corrupted while transmitted due
to, e.g., pulse-type jamming. Deinterleaving the received symbols will spread the
corrupted bits over the whole message. In this way a reconstruction of the original
symbols and bits, respectively, becomes possible using the other error correction
methods.

The content of the data message differs from system to system. Furthermore,
different services use different data messages. Common to all systems is that there
is at least one service to transmit ephemerides data as well as time information. In
this way the receiver can autonomously compute satellite position information. If
the satellite parameters are not detectable on the satellite signal, e.g., due to low
S/N, the receiver may acquire them by other means, i.e., communication links.

Some GNSS also apply satellite and frequency diversity concepts to decrease
the time needed for decoding the complete navigation message. Satellites transmit-
ting the same information but at a different time epoch is called satellite diversity.
For example, satellite 1 transmits the almanac of satellites 5 and 6, whereas satel-
lite 2 transmits at the same period of time the almanac of satellites 7 and 8. Thus
the navigation message is alternated as a function of time and satellite. In this way,
when tracking more than one satellite, demodulation of almanac information from
several satellites becomes possible in a short period of time. This furthermore de-
creases the TTFF and increases the number of tracked satellites despite of short
tracking periods. Frequency diversity applies the same principle; however, the nav-
igation message is not alternated as a function of the satellite but as a function of
the carrier frequency. The different sequencing allows for a fast demodulation of
the navigation message when tracking more than one frequency.

Once the data message has been decoded and the receiver synchronized to the
GNSS time, it is not necessary to continuously receive or decode the navigation
data, as long as the receiver continuously tracks the code or carrier. This is advan-
tageous since, as Spilker and Natali (1996: p. 748) emphasize, the S/N threshold
for tracking is generally significantly lower than the threshold for data detection.
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5.1 Data acquisition

In concept, the satellite navigation observables are ranges which are deduced from
measured time or phase differences based on a comparison between received sig-
nals and receiver-generated signals. Unlike the terrestrial electronic distance mea-
surements, satellite navigation uses the “one-way concept” where two clocks are
involved, namely one in the satellite and the other in the receiver. Thus, the ranges
are biased by satellite and receiver clock errors and, consequently, they are denoted
as pseudoranges.

5.1.1 Code pseudoranges

Let us denote by #°(sat) the signal emission time referred to the reading of the
satellite clock and by 7.(rec) the signal reception time referred to the reading of
the receiver clock. Recall that the satellite clock reading #°(sat) is transmitted in
the navigation message via the PRN code. The errors (or biases) of the clocks with
respect to a common time system (i.e., the respective system time) are termed ¢°
and o,

The difference between the clock readings is equivalent to the time shift At
which aligns the satellite and reference signal during the code correlation procedure
in the receiver. Thus,

t.(rec) —t'(sat) = [t, + 6,] — [£' + 8] = At + AS, (5.1)

indicating that in #,(rec) and #°(sat) two different time systems are involved but that
now on the right-hand side #, and #* refer to the common system time and where
At = t,—t5 and AS = 6, — §°. The bias 6° of the satellite clock can be modeled if the
respective information is transmitted accordingly, e.g., by a polynomial with the
coefficients being transmitted in the navigation message. Assuming the correction
¢° has been applied, A¢ equals the receiver clock bias.

When multiplying the time interval #,(rec)—#*(sat) of Eq. (5.1), which is affected
by the clock errors, by the speed of light ¢, the code pseudorange

R =c[t(rec) — t’(sat)] = cAt+ cAS = o+ cAS (5.2)

is obtained, where o = ¢ At has been introduced. The range o is calculated from the
true signal travel time. In other words, o corresponds to the distance between the
position of the satellite at epoch #° and the position of the antenna of the receiver
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at epoch 7,. Remember that both epochs refer to the common system time. Since o
is a function of two different epochs, it is often expanded into a Taylor series with
respect to, e.g., the emission time

o =o' t,) = o(t’, (" + Ar)) = o(t*) + o(1°) At, (5.3)

where ¢ denotes the time derivative of o or the radial velocity of the satellite relative
to the receiving antenna. All epochs in Eq. (5.3) are expressed in a common system
time.

The maximum radial velocity for GNSS satellites in the case of a stationary
receiver is 0 ~ 1.0kms™!, and the travel time of the satellite signal is from about
0.06s to 0.10s. The amount of correction term in Eq. (5.3), thus, is greater than
60 m.

The precision of a pseudorange derived from code measurements has been tra-
ditionally about 1% of the chip length. Therefore, a chip length of 300 m for a
coarse code would yield a precision of roughly 3m and an assumed chip length
of 30m for a precise code would yield a precision of 0.3 m. However, more re-
cent developments demonstrate that a precision of about 0.1% of the chip length is
possible.

5.1.2 Phase pseudoranges

Let us denote by ¢°(¢) the phase of the received and reconstructed carrier with
frequency f* and by ¢,(¢) the phase of a reference carrier generated in the receiver
with frequency f,.. Here, the parameter ¢ is an epoch in a common time system
reckoned from an initial epoch #y = 0. According to Eq. (4.11), the following phase
equations are obtained

, , 0
PO=11-f~ =9

(1) = frt_ Por »

5.4

where the phases are expressed in cycles. The initial phases ¢, @or are caused by
clock errors and are equal to

o) =1,
(5.5)
Yor = _fr 6r .
Hence, the beat phase ¢;(¢) is given by
@} (1) = ¢* (1) — ¢,(1) ,
(5.6)

:ﬁﬂg+ﬁy—ﬁﬁﬁ{f—ﬁn.
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The deviation of the frequencies f*, f, from the nominal frequency f is in the order
of only some fractional parts of hertz. This may be verified by considering, e.g., a
short-time stability in the frequencies of df/f = 107!2. With the nominal carrier
frequency f ~ 1.5 GHz, the frequency error, thus, becomes df = 1.5 - 107> Hz.
Such a frequency error may be neglected because during signal propagation (i.e.,
t = 0.07 s) a maximum error of 10™* cycles in the beat phase is generated which
is below the noise level. The clock errors are in the range of milliseconds and are,
thus, less effective. Summarizing, Eq. (5.6) may be written in the simplified form

@®=ﬁ€—fM, (5.7)

where again Ad = §, — 6° has been used. If the assumption of frequency stability
is incorrect and the oscillators are unstable, then their behavior has to be modeled
by, for example, polynomials where clock and frequency offsets and a frequency
drift are determined. Historically, a complete carrier phase model which includes
the solution of large (e.g., 1 second) receiver clock errors was developed by Re-
mondi (1984). In practice, eventual residual errors can be eliminated by differenc-
ing the measurements.

Switching on a receiver at epoch ¢y, the instantaneous fractional beat phase is
measured. The initial integer number N of cycles between satellite and receiver is
unknown. However, when tracking is continued without loss of lock, the number
N, also called integer ambiguity, remains the same and the beat phase at epoch ¢ is
given by

t
w0 =gy | +N, (5.8)

where Ag? denotes the (measurable) fractional phase at epoch ¢ augmented by the
number of integer cycles since the initial epoch #y. A geometrical interpretation
of Eq. (5.8) is provided in Fig. 5.1, where A¢y; is a shortened notation for Ag: | Z)
and, for simplicity, the initial fractional beat phase Agg is assumed to be zero.
Substituting Eq. (5.8) into Eq. (5.7) and denoting the negative observation quantity
by ® = —A¢; yields the equation for the phase pseudoranges

1 c
O =— —-A6+ N, 5.9
70+ A0+ (5.9

where the wavelength A has been introduced according to Eq. (4.10). Multiplying
the above equation by A scales the phase expressed in cycles to a range (given in
meter):

AD =0+cAS+AN. (5.10)
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Fig. 5.1. Geometrical interpretation of phase range

This equation differs from the code pseudorange only by the integer multiples of
A. Again, the range o represents the distance between the satellite at satellite trans-
mission time epoch ¢ and the receiver at reception time epoch ¢ + At (considering
both epochs in a common system time). The phase of an electromagnetic wave can
be measured to better than 0.01 cycles which corresponds to millimeter precision
for a frequency in the gigahertz range.

It should be noted that a plus sign convention has been chosen for Eq. (5.9). This
choice is somewhat arbitrary since quite often the phase @ and the distance o have
different signs. Actually, the sign is receiver-dependent because the beat phase is
generated in the receiver and the combination of the satellite and the receiver signal
may differ for various receiver types.

5.1.3 Doppler data

Historically, the Transit system used the integrated Doppler shifts (i.e., phase dif-
ferences) which were scaled to delta ranges. Today, the raw Doppler shift, being
linearly dependent on the radial velocity, cf. Eq. (4.13), and, thus, allowing for ve-
locity determination in real time is important for navigation. Considering Eq. (5.9),
the equation for the observed Doppler shift scaled to range rate is given by

D=1d=p+cAd, (5.11)

where the derivatives with respect to time are indicated by a dot. The raw Doppler
shift measurement is less accurate than the integrated Doppler shift. An estimate
of the achievable accuracy is 0.001 Hz. Using Eq. (4.13), this corresponds to 3 -
10~* ms~! if the Doppler shift is based on an emitted frequency of 1 GHz.
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Remember when the satellite is moving toward the GNSS receiver, the Doppler
shift is positive; so one gets more Doppler counts when the range is diminishing.

Apart from its meaning in navigation, it is worth noting here that the raw
Doppler shift is also applied to determine integer ambiguities in kinematic survey-
ing or may be used as an additional independent observable for point positioning.

5.1.4 Biases and noise

The code pseudoranges, cf. Eq. (5.2), and phase pseudoranges, cf. Eq. (5.9), are
affected by systematic errors or biases and random noise as well. Note that Doppler
measurements are affected by the bias rates only. The error sources can be classi-
fied into three groups, namely satellite-related errors, propagation-medium-related
errors, and receiver-related errors. Some range biases are listed in Table 5.1.

Some of the systematic errors can be modeled and give rise to additional terms
in the observation equations which will be explained in detail in later sections. As
mentioned earlier, systematic effects can also be eliminated (or at least strongly re-
duced) by appropriate combinations of the observables. Differencing measurements
of two receivers to the same satellite eliminates satellite-specific biases; differenc-
ing between two satellites and one receiver eliminates receiver-specific biases. As
a consequence, double-difference pseudoranges are, to a high degree, free of sys-
tematic errors originating from the satellites and from the receivers. With respect
to refraction, this is only true for short baselines where the measured ranges at
both endpoints are affected equally. In addition, ionospheric refraction can virtu-
ally be eliminated by an adequate combination of dual-frequency data. Antenna
phase center variations are treated in Sect. 5.5. Multipath is caused by multiple re-
flections of the signal (which can also occur at the satellite during signal emission).
The interference between the direct and the reflected signal is largely not random;
however, it may also appear as a noise. Wells et al. (1987) report a similar effect
called imaging where a reflecting obstacle generates an image of the real antenna

Table 5.1. Range biases

Source Effect

Satellite Clock bias
Orbital errors
Signal propagation Ionospheric refraction
Tropospheric refraction
Receiver Antenna phase center variation
Clock bias
Multipath
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Table 5.2. Typical magnitude of range biases

Range Bias

Code range (coarse code) 300cm
Code range (precise code) 30cm
Phase range 5 mm

which distorts the antenna pattern. Both effects, multipath and imaging, can be con-
siderably reduced by selecting sites protected from reflections (buildings, vehicles,
trees, etc.) and by an appropriate antenna design. It should be noted that multipath is
frequency (i.e., wavelength) dependent. Therefore, carrier phases are less affected
than code ranges (Lachapelle 1990). More details on the multipath problems are
given in Sect. 5.6.

The random noise mainly contains the actual observation noise plus multipath.
Assuming a typical chip length of 300 m for a coarse code and of 30 m for a precise
code, the pseudorange noise is summarized in Table 5.2.

The signal-in-space (SIS) user range error (URE) is an estimate comprising
errors of ephemerides data, satellite clock, and the ionospheric and tropospheric
delay. It does not consider errors caused by the environment (e.g., multipath) or
by the user equipment (e.g., receiver noise including antenna offset and variation).
Extending the URE by the user equipment and environmental errors, the user equiv-
alent range error (UERE) is obtained. Even if there are some correlations, the indi-
vidual error contributions are considered to be independent. Therefore, the UERE
is computed as square root of the summed squares of the six error constituents
ephemerides data, satellite clock, ionosphere, troposphere, multipath, and receiver
measurement. The receiver measurement component can be further split into re-
ceiver clock error and white noise. In Table 5.3 adapted from Parkinson (1996:
p. 481), the UERE is calculated based on typical values (all given in meters) for the
individual quantities. The column headed by “Total” results from the square root of
the sum of the squared bias and the squared random quantity, e.g., for the satellite
clock the total is obtained by V2.02 +0.72 = 2.1. Note that linked to this UERE
computation is the 1o probability level which amounts to 68.3%, see Sect. 7.3.6.

In combination with a dilution of precision (DOP) factor, which will be ex-
plained in Sect. 7.3.4, UERE allows for an estimation of the achievable point posi-
tioning accuracy (Sect. 7.3.1).

As Kuusniemi (2005) indicates, the value of the UERE as computed in Ta-
ble 5.3 is limited because in real situations too many variables must be taken into
account, e.g., the elevation angle of the satellite which influences the signal path
length, the strength of the received signal, and the changing multipath environment.
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Table 5.3. UERE computation

Error source Bias Random Total
[m] [m] [m]
Ephemerides data 2.1 0.0 2.1
Satellite clock 2.0 0.7 2.1
Ionosphere 4.0 0.5 4.0
Troposphere 0.5 0.5 0.7
Multipath 1.0 1.0 1.4
Receiver measurement 0.5 0.2 0.5
UERE [m] 5.1 1.4 53

The signal strength is described by the carrier-to-noise power density ratio and
the signal-to-noise (S/N) ratio. Details on these parameters are given in Sect. 4.3.1.
The carrier-to-noise power density ratio is, according to Lachapelle (2003), the
fundamental navigation signal quality parameter.

5.2 Data combinations

GNSS observables are obtained from the ranging code information or the carrier
wave in the broadcast satellite signal. Assuming two carriers based on the respec-
tive frequencies f; and f; and one code modulated on each of the two carriers, one
could measure the code ranges R;, R», the carrier phases @1, @, and the corre-
sponding Doppler shifts Dy, D, for a single epoch, where the subscript indicates
the respective frequency. Subsequently, the Doppler observables are not considered.
In general, the number of observables of a GNSS receiver can differ, for example,
a single-frequency receiver delivers only data from one frequency; considering a
receiver that may manage three carriers and two codes, the number of observables
increases accordingly.

The objective of this section is to show how linear combinations are developed
for dual-frequency data, and how code range smoothing by means of carrier phases
is performed.

5.2.1 Linear phase pseudorange combinations

General remarks

Suppose two frequencies f; and f, and denote the respective phase pseudoranges
by @ and ®,. The linear combination of two phase pseudoranges is defined by

O =n D +nydy, (5.12)
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where n; and ny are arbitrary numbers. The substitution of the relations ®; = f; ¢
for the corresponding frequencies f; and f, gives

CD=n1f1t+n2f2t:ft. (5.13)
Therefore,
f=nfit+tnf (5.14)
is the frequency and
c
Q1= — (5.15)
f

is the wavelength of the linear combination.
Compared to the noise of a single phase, the noise level for the linear combina-

2
1

propagation law and assuming the same noise level for both phases.

tion differs by the factor /n7 + n% which follows from the application of the error

Linear combinations with integer numbers
The simplest nontrivial linear combinations of the two phase pseudoranges ®; and
@, in Eq. (5.12) are n; = ny = 1, yielding the sum

O+ Dy, (516)
and n; = 1, np = —1, leading to the difference
O —D,. (5.17)

According to (5.15), increasing the frequency reduces (or narrows) the wavelength
and decreasing the frequency increases (or widens) the wavelength. Accordingly,
the combination ®; + @, is denoted as narrow lane and ®; — @, as wide lane. The
lane signals are used for ambiguity resolution (Sect. 7.2).

The advantage of a linear combination with integer numbers is that the integer
nature of the ambiguities is preserved.

Linear combinations with real numbers
A slightly more complicated linear combination results from the choice

n=1, ny = —% (5.18)
leading to the combination
D) - éd)z, (5.19)

fi
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which is often denoted as geometric residual. This quantity is the kernel in a com-
bination used to reduce ionospheric effects (Sect. 5.3.2).
Another linear combination follows from the reciprocal values of (5.18)

nm=1, ny = —Ji (5.20)
f2
leading to the combination
Q) - ﬁq)z, (5.21)
fa

which is often denoted as ionospheric residual. This quantity is used, e.g., in the
context of cycle slip detection (Sect. 7.1.2).

The drawback of a linear combination with real numbers is that the integer
nature of the ambiguity is generally lost.

5.2.2 Code pseudorange smoothing

The principle of code pseudorange smoothing by means of phase pseudoranges is
an important issue in accurate real-time positioning.

Assuming dual-frequency measurements for epoch ¢, the code pseudoranges
R (1), Ry(t1) and the carrier phase pseudoranges ®@(#;), ®,(¢;) are obtained. Fur-
ther assume the code pseudoranges are scaled to cycles (but still being denoted as R)
by dividing them by the corresponding carrier wavelength. Note that pseudoranges
scaled to cycles are sometimes denoted code phases. Using the two frequencies
f1, f», the combination

R(y) = J1Ri(t1) — f2 Ra(t1) (5.22)

fi+fo

is formed for the code pseudoranges and the wide-lane signal

D(11) = O1(11) — D2(11) (5.23)

for the carrier phase pseudoranges. From Eq. (5.22) it can be verified by applying
the error propagation law that the noise of the combined code pseudorange R(¢) is

reduced by the factor ./ f12 + f22 /(f1 + f>) which amounts to 0.7 for present GNSS
compared to the noise of the single code measurement. The increase of the noise
in the wide-lane signal by a factor of V2 has no effect because the noise of the
carrier phase pseudoranges is much lower than the noise of the code pseudoranges.
Note that both signals R(#) and ®(¢1) have the same frequency and, thus, the same
wavelength as may be verified by applying Eq. (5.14).
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Combinations (5.22) and (5.23) are formed for each epoch. Additionally, for
all epochs t; after t1, extrapolated values R(#;)ex of the code pseudoranges can be
calculated from

R(tj)ex = R(11) + (D(1;) — O(11)) - (5.24)
The smoothed value R(#)sy, 1s finally obtained by the arithmetic mean
R(t)sm = 5 (R(%) + R()ex) - (5.25)

Generalizing the above formulas for an arbitrary epoch #; (with the preceding epoch
ti—1), arecursive algorithm is given by

_ SiRi(@) = > Ro(ti)
fi+h '

O(1;) =01(5;) — Do(2y)

R(1;)

(5.26)
R(t))ex = R(ti—1)sm + (@) — P(#;-1)) ,

R(t)sm = % (R(t:) + R(t;)ex) »

which works under the initial condition R(#1) = R(#1)ex = R(t1)sm forall i > 1.

The above algorithm assumes data free of gross errors. However, carrier phase
data are sensitive to changes in the integer ambiguity (i.e., cycle slips). To circum-
vent this problem, a variation of the algorithm is given subsequently. Using the
same notations as before for an epoch #;, the smoothed code pseudorange is ob-
tained by

R(t)sm = wR(#) + (1 = W) R(ti)ex , (5.27)

where w is a time-dependent weight factor. Note that from the previous algorithm
R(t)ex = R(ti_1)sm + ®(t;) — O(1;,_1) could be substituted into (5.27).

For the first epoch i = 1, the weight is set w = 1; thus, putting the full weight
on the measured code pseudorange. For consecutive epochs, the weight of the code
pseudoranges is continuously reduced and, thus, emphasizes the influence of the
carrier phases. A reduction of the weight by 0.01 from epoch to epoch was tested
in a kinematic experiment with a data sampling rate of 1 Hz. After 100 seconds,
only the extrapolated value is taken into account. Again, in the case of cycle slips,
the algorithm would fail. A simple check of the carrier phase difference for two
consecutive epochs by the Doppler shift multiplied by the time interval may detect
data irregularities such as cycle slips. After the occurrence of a cycle slip, the weight
is reset to w = 1, which fully eliminates the influence of the erroneous carrier phase
data. The clue of this approach is that cycle slips must be detected but do not have
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Fig. 5.2. Code pseudoranges in [m]: unsmoothed (top), smoothed (middle) by
algorithm (5.26), and weighted smoothing (bottom) using Eq. (5.27)

to be repaired. Note, however, repair is possible if there is enough redundancy in
the measurements.

To demonstrate the effect of the smoothing algorithm, real data are presented
in Fig. 5.2. The code pseudoranges for a data sample of 170 epochs measured
with a 1 Hz data rate are shown in the top graph (after eliminating the trend due
to the satellite motion). In the middle graph, R(#)sm of the smoothing algorithm
(5.26) is given. Finally, the bottom graph of Fig. 5.2 shows the weighting effect
of (5.27). As described above, the weight reduction by 0.01 from epoch to epoch
shows the decreasing influence of the code and the emphasized impact of the carrier
phases. Another smoothing algorithm for code pseudoranges uses phase differences
AD(¢;, 1) obtained by the integrated Doppler shift between the current epoch #;
and the starting epoch #;. Note that the integrated Doppler shifts are insensitive to
cycle slips. From each code pseudorange R(#;) at epoch #;, an estimate of the code
pseudorange at epoch #; can be given by

R(11)i = R(t;) — AD(t;, 1), (5.28)
where the subscript i on the left side of the equation indicates the epoch that the
code pseudorange R(#;) is computed from. Obtaining an estimate consecutively for

each epoch, the arithmetic mean R(#;), of the code pseudorange for n epochs is
calculated by

1 n
R)m =~ > RO, (5.29)
i=1
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and the smoothed code pseudorange for an arbitrary epoch results from
R(t)sm = R(t11)m + AD(;, 11) . (5.30)

The advantage of this procedure lies in the reduction of the noise in the initial code
pseudorange by averaging an arbitrary number n of measured code pseudoranges.
Note from the three formulas (5.28) through (5.30) that the algorithm may also be
applied successively epoch by epoch where the arithmetic mean must be updated
from epoch to epoch. Using the above notations, formula (5.30) also works for
epoch t1, where, of course, AD(¢1, 1) is zero and there is no smoothing effect.

All the smoothing algorithms are also applicable if only single-frequency data
are available. In this case, R(¢;), O(¢;), and AD(¢;,t;) denote the single-frequency
code pseudorange, carrier phase pseudorange, and phase difference, respectively.

5.3 Atmospheric effects

5.3.1 Phase and group velocity

Consider a single electromagnetic wave propagating in space with wavelength A
and frequency f. The velocity of its phase

Uph = Af (5.31)

is denoted phase velocity. For GNSS, the carrier waves are propagating with this
velocity.

For a group of waves with slightly different frequencies, the propagation of the
resultant energy is defined by the group velocity

vgr = ——= A (5.32)

according to Bauer (2003: p. 106). This velocity has to be considered for GNSS
code measurements.

A relation between phase and group velocity is derived by forming the total
differential of Eq. (5.31) resulting in

dvph = fdA+ Adf, (5.33)
which is rearranged to

df ldvph f
47 _ 2 ) 34
di A1 dAa A (5-38

The substitution of (5.34) into (5.32) yields

L S 5.35
Ugr = d_/i i (5.35)
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or finally the Rayleigh equation

dupn
H .

The differentiation (5.33) implicitly contains the dispersion (Joos 1956: p. 57),
which is defined as the dependence of the phase velocity on the wavelength or the
frequency. Phase and group velocity are equal in nondispersive media and corre-
spond to the speed of light in vacuum.

The wave propagation in a medium depends on the refractive index n. Gener-
ally, the propagation velocity is obtained from

Vgr = Uph — A (5.36)

v=—. (5.37)

n

Applying this expression to the phase and group velocity, appropriate formulas for
the corresponding refractive index npp,
bph = — , (5.38)
Nph
and the refractive index ng;,
bgr = —, (5.39)

Ngr

are achieved. Differentiation of the phase velocity with respect to 4, that is,

dvph C dl’lph
B i 5.40
dAa n% da (540)
ph
and substitution of the last three equations into (5.36) yields
dn
Y s L (5.41)
Ngr  Mph e dAa
or
1 1 1 dn
_=_(1+A——Ph). (5.42)
Ngr  Mph npp dA
This equation may be inverted to
1 dnph
Ngr = Nph (1 - /ln—ph W) . (543)
where the approximation (1 + £)~! = 1 — & has been applied accordingly. Thus,
dn
Mgr = g — 1 —22 (5.44)

dAa
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is the modified Rayleigh equation. A slightly different form is obtained by differ-
entiating the relation ¢ = A f with respect to A and f, that is,

da d
da_ _df (5.45)
A f
and by substituting the result into (5.44):
dnpn
Ngr = Nph + f W . (546)

5.3.2 Ionospheric refraction

The ionosphere extends in various layers from about 50 km to 1 000 km above earth
and is described in more detail in Sect. 4.1.2. It is a dispersive medium with respect
to the GNSS radio signal. Following Seeber (2003: p. 54), the series

¢ 3 ¢4
F+F+F+...

approximates the phase refractive index. The coefficients ¢, c3, ¢4 do not depend
on frequency but on the quantity N, denoting the number of electrons per cubic me-
ter (i.e., the electron density) along the propagation path. Using an approximation
by cutting off the series expansion after the quadratic term, that is

npn = 1+ (5.47)

non = 1+ J% , (5.48)

differentiating this equation leading to

2c
dnpp = —f—f df, (5.49)
and substituting (5.48) and (5.49) into (5.46) yields
c 2c
ng =1+ }Ti - f—j (5.50)
or
C
Mg =1 - ]Ti : (5.51)

It can be seen from (5.48) and (5.51) that the group and the phase refractive indices
deviate from unity with opposite sign. With an estimate for ¢, (Seeber 2003: p. 54),

¢ =-40.3 N, [HZ?], (5.52)
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the relation ng, > npp and, thus, vg, < vpp follows because the electron density N,
is always positive. As a consequence of the different velocities, a group delay and
a phase advance occur. In other words, GNSS ranging codes are delayed and the
carrier phases are advanced. Therefore, the measured code pseudoranges are too
long and the measured carrier phase pseudoranges are too short compared to the
geometric range between the satellite and the receiver. The amount of the difference
is the same in both cases.
According to Fermat’s principle, the measured range s is defined by

s=fnds, (5.53)

where the integral must be extended along the path of the signal. The geometric
range so along the straight line between the satellite and the receiver may be ob-
tained analogously by setting n = 1:

so = fdso. (5.54)

The difference A" between measured and geometric range is called ionospheric
refraction and follows from

Alomo = f nds — f dso, (5.55)

which may be written for a phase refractive index np, from (5.48) as

Al = f(l + J%)ds—fdso (5.56)

and for a group refractive index ng, from (5.51) as

Ag;n":f(l—%)ds—fdso. (5.57)

A simplification is obtained when approximating the integration for the first term
in (5.56) and (5.57) along the geometric range. In this case, ds becomes dsy and
the formulas

(o) 2
AL‘;}“" = JTz dso, Alg(;no =- JTZ dso (5.58)
result, which can also be written as
40.3 40.3
A;%no - _ fz fNe dso, Alg(l)‘no — ? fNe dso, (5.59)
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where (5.52) has been substituted. Defining the total electron content (TEC) by
TEC = f N, dsg (5.60)

and substituting TEC into (5.59) yields

40. 40.
Alere = __]?23 TEC, AR = % TEC (5.61)

as the final result (in meter). Usually, the TEC is given in TEC units (TECU), where

1 TECU = 10'® electrons per m?. (5.62)

For a numerical example, the delay AI%“" = —0.18 m is obtained if a frequency of
say 1.5 GHz and one TECU is substituted.

Note that TEC as introduced in (5.60) is the total electron content along the
straight signal path between the satellite and the receiver. The integral is assumed
to include the electrons in a column with a cross section of 1 m? and extending from
the receiver to the satellite. Usually, the total vertical electron content (TVEC) is
modeled. More figuratively, this quantity is sometimes denoted as total overhead
electron content. If TVEC is introduced in (5.61), the quantities apply only for
satellites at zenith. For arbitrary lines of sight (Fig. 5.3), the zenith angle of the
satellite must be taken into account by
1 403 1 403

Ao - — U TVEC, Al - —~TVEC 5.63
ph cos 7’ fz er cos 7/ f2 ( )

since the path length in the ionosphere varies with a changing zenith angle. These
two quantities differ only with respect to the sign. Introducing the notation
1 403

= —— ——TVEC 5.64
cosz f? >-64)

Tono

for the (positive) amount of the ionospheric influence on a measured pseudorange
allows the omission of the subscripts “ph” or “gr” but requires the consideration of
the correct sign for the appropriate models. This means that the ionospheric influ-
ence for the code pseudorange is modeled by +A°" and for the phase pseudorange
by _ AIOHO.

Figure 5.3 represents a single-layer model with the assumption that all free
electrons are concentrated in an infinitesimally thin spherical shell at the height 4,,
and containing the ionospheric point /P. From Fig. 5.3, the relation

. R, )
! = 5.65
sinz R sin zo (5.65)
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Fig. 5.3. Geometry for the ionospheric path delay

is derived, where R, is the mean radius of the earth, %, is a mean value for the
height of the ionosphere, and 7’ and zg are the zenith angles at the ionospheric point
and at the observing site. The zenith angle zy can be calculated for a known satellite
position and approximate coordinates of the observing site. For ,, a value in the
range between 300 km and 400 km is typical. The height is only sensitive for low
satellite elevations.

As shown by (5.61), the change of range caused by the ionospheric refraction
may be restricted to the determination of the TEC. However, the TEC itself is a
fairly complicated quantity. As mentioned in Sect. 4.1.2, it depends on sunspot
activities (approximately 11-year cycle), seasonal and diurnal variations, the line
of sight, which includes elevation and azimuth of the satellite, and the position of
the observing site. The TEC may be measured, estimated, its effect computed by
models, or eliminated.

Measuring the TEC

Considering a nationwide example among many others, Japan has for a long time
been very ambitious in measuring TEC. One of the experiments is based on the cor-
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relation between the TEC and the critical plasma frequency provided by Japanese
ionospheric observatories on an hourly basis. By interpolation, any arbitrary loca-
tion in Japan can be covered.

Another Japanese experiment essentially uses the ionospheric residual as de-
scribed in (5.21). More than 1000 GNSS receivers installed in Japan establish a
dense network with an average distance of 25 km between two receivers (Otsuka
et al. 2002). In the three-step procedure, first an hourly average of TEC is esti-
mated by applying a weighted least-squares adjustment individually to the data
from a single receiver. Some biases are eliminated in the second step. Finally, a
two-dimensional map of TVEC with a time resolution of 30s and a spatial reso-
lution of 0.15° x 0.15° in latitude and longitude is generated. Similar experiments
have been running around the world since “the ionosphere is increasingly used as a
laboratory in which active plasma experiments are performed” (Stubbe 1996).

In the global sense, the measuring of TEC is covered by the more general topic
of atmospheric monitoring as described in Sect. 5.3.4.

Computing the effect of the TEC

Klobuchar model

Here, the entire vertical ionospheric refraction is approximated by the model of
Klobuchar (1986) and yields the vertical time delay for the code measurements.
Although the model is an approximation, it is nevertheless of importance because
it uses the ionospheric coefficients broadcast within the navigation message. The
Klobuchar model is

2n(t— A
ATI™ = A + A, cos(u) , (5.66)
Ay
where
A =5-10%s=5ns,
Ay=ar +ar @ + a3 @ + s g
(5.67)
Az = 14" local time ,
Ay =B +Bagp+ B’ +Bagly’ .
The values for A; and Az are constant, the coefficients «;, 8;, i = 1,...,4, are

uploaded to the satellites and broadcast to the user. The parameter ¢ in (5.66) is the
local time of the ionospheric point /P (Fig. 5.3) and may be derived from

(=20 s, (5.68)
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where A;p is the geomagnetic longitude positive to east for the ionospheric point
in degrees and 7yr is the observation epoch in universal time (UT). Finally, ¢, in
Eq. (5.67) is the spherical distance between the geomagnetic pole and the iono-
spheric point. Denoting the coordinates of the geomagnetic pole by ¢p, Ap and
those of the ionospheric point by ¢p, 4;p, then 7, is obtained by

cos @jp = singp singp + cos gip cos gp cos(Ap — Ap), (5.69)
where the coordinates of the geomagnetic pole are

op= T8.3°N,
(5.70)
Ap=291.0°E.

Summarizing, the evaluation of the Klobuchar model may be performed by the
following steps:

e Compute the azimuth a and the zenith angle zq of the satellite for epoch fyr.

e Choose a mean height of the ionosphere and compute the distance s be-
tween the observing site and the ionospheric point obtained from the triangle
formed by geocenter — observing site — ionospheric point (Fig. 5.3).

e Compute the coordinates ¢;p, A;p of the ionospheric point by means of the
quantities a, zg, S.

e Calculate ¢}, from (5.69).

e Calculate A, and A4 from (5.67), where the coefficients «;, 8, i = 1,...,4,
are received via the satellite navigation message.

e Use (5.67) and (5.68) and compute the vertical (or zenith) delay ATJ"no by
(5.66).

e By calculating 7’ from (5.65) and applying AT'" = AT/ cos 7/, the tran-
sition from the vertical delay to the delay along the wave path is achieved.
The result is obtained as a time delay in seconds which must be multiplied
by the speed of light to convert it to a measure of change in range.

By taking into account the Klobuchar model, the influence of the ionospheric re-
fraction is reduced by at least 50% (ARINC Engineering Services 2006a).

NeQuick model

The Aeronomy and Radiopropagation Laboratory (ARPL) of the Abdus Salam In-
ternational Centre for Theoretical Physics in Trieste (Italy) and the Institute for
Geophysics, Astrophysics and Meteorology of the University of Graz (Austria)
have developed NeQuick, a three-dimensional, time-dependent ionospheric elec-
tron density model.
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Since the model enables the calculation of the electron concentration at any
given location in the ionosphere, the vertical or slant electronic density profile and
TEC may easily be computed along any satellite-to-receiver path as required for
GNSS.

The International Telecommunication Union, Radiocommunication (ITU-R)
sector has adopted in 2001 the NeQuick model as suitable method for TEC model-
ing. NeQuick is an ionospheric electron concentration model able to give the elec-
tron density distribution on both the bottomside and topside of the ionosphere. The
model input parameters are position, time, and solar flux; the output is the electron
concentration at the given location and time.

The NeQuick model uses monthly average values of solar activity either ex-
pressed by the 12-month running mean sunspot number Rj> or by the average
10.7 cm solar radio flux Fg7. The two quantities are interrelated by Rj» = (Fo.7 —
57)/0.93.

Supplementing explanations according to R. Leitinger and S. Radicella are
given in the software documentation for the NeQuick model, which is freely avail-
able from ITU-R.

When running the software, the NeQuick model has to be used once for each
new set of season (input quantity is month), time (input quantity is UT), and solar
activity (input data is solar radio flux Fo7). After this, TEC may be computed for
any latitude ¢, longitude A, and height 4.

The available software also allows for the electronic density profile calcula-
tion for a path between a satellite and a ground station. At http://arpl.ictp.it/nqg-
online/index.html, the Web site of ARPL, an online calculation may be performed
resulting in the electronic density profile as a function of altitude.

The solar flux (or the sunspot number, respectively) may be replaced by the
effective ionization parameter Az. Three coefficients ag, a;, a, determine the effec-
tive ionization parameter by

Az =ag + ajpu + arp?, (5.71)

where u is the modified magnetic dip obtained from the true magnetic dip / and the
latitude ¢ of the site of interest by

1
\fcosg

The magnetic dip / is also denoted as magnetic inclination (which is 0° at the
magnetic equator and 90° at each of the magnetic poles).

In the framework of the European Galileo project, the NeQuick model has been
proposed to be used for single-frequency positioning. Arbesser-Rastburg (2006)
structures the possible procedure:

tanu = (5.72)
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Sensor stations: the primary task of the globally distributed network of sensor
stations is to continuously measure slant TEC and to optimize the effective
ionization parameters required for the NeQuick model.

Satellites: at least once a day, the satellites get an upload of the effective
ionization parameters. This information is sent to the users in the navigation
message.

Users: from the navigation message, the receiver extracts the coefficients
ao, ai, ap necessary to calculate the effective ionization parameter Az. This
input is required for the NeQuick model to calculate the slant TEC (so that
the respective pseudorange may be corrected).

Arbesser-Rastburg (2006) and Arbesser-Rastburg and Jakowski (2007) give even
more detailed information with respect to the GNSS receiver inputs and the algo-
rithm to be performed.

The receiver retrieves from the navigation message as input data

the coefficients ag, a;, a, for the effective ionization parameter Az,

the ionospheric disturbance flags (alert the user that the ionospheric correc-
tion coming from the navigation message might not meet the specified per-
formance),

the actual time (UT and month of the year),
the satellite position (calculable from the Keplerian elements),

the receiver estimated position (before ionospheric correction).

The receiver retrieves from its internal firmware as additional input data

information on the earth’s magnetic field (which should be updated every five
years to account for the variation of the earth’s magnetic field),

the ITU-R maps in twelve files, one for each calendar month.

The algorithm carried out in the receiver consists of the following steps:

L.

The receiver position ¢, A, h is estimated using pseudoranges (without iono-
spheric correction).

. Based on the latitude ¢ and on the longitude A of the receiver position, the

magnetic dip I is computed with the internal firmware information on the
earth’s magnetic field using a third-order interpolation procedure.

The modified dip p is computed using (5.72).

4. The effective ionization parameter Az is computed using (5.71).

Based on Az and using the NeQuick model, the electron density is calculated
for a point along the satellite-receiver path.
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6. All previous steps are repeated for many discrete points along the satellite—
receiver path. The number and spacing of the points will be a trade-off be-
tween integration error and computational time.

7. All electron density values along the satellite—receiver ray are integrated nu-
merically in order to obtain the slant TEC.

8. The slant TEC is converted to A" using (5.61) to get a slant delay being
used to correct pseudoranges.

Leitinger et al. (2005) and Nava et al. (2005) describe a modification of the
NeQuick model: the topside formulation is now based on an empirical parameter
that does not depend on the month of the year; furthermore, a new mapping pro-
cedure is introduced so that simplified ITU-R maps may be used, and some other
improvements are implied.

Eliminating the effect of the TEC

It is difficult to find a satisfying model for the TEC because of the various time-
dependent influences. The most efficient method is to eliminate the ionospheric
refraction by using two signals with different frequencies. This dual-frequency
method is the main reason why the GNSS satellites emit (at least) two carrier waves.

Starting with the phase pseudorange model (5.10) and taking into account the
frequency-dependent ionospheric refraction (5.64) gives

11Dy =0+ cA6+ ANy — Allono ,
(5.73)
L0 =0+ cAS + 1N, — AP,

where the subscripts 1 and 2 indicate the dependence on the respective frequency
of the two carriers. After dividing by the corresponding wavelengths,

| 1
D= — o+ — AS+Nj — — Al

A1 A1 A1
(5.74)
Dy = o+ S AG+ Ny — L plowo
LT A L2
are obtained. Using the relation ¢ = f A yields
o =L g4 fias+ N —ﬁA{OHO,
C C
(5.75)

f29+f2A6+N2—éA12°“°,

Oy =—
c c
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which can be written in the form

b
Oy =afi +N - —,

N
b (5.76)
(D2 = afz + Ny — ]Tz
by introducing
a=2+ A5 geometry term,
c
5.7
fi2 Tono 1 40.3 :
b=—A = - TVEC ionosphere term,
c c cos?

where the second expression for b may be verified by substituting Eq. (5.64). Note
that the auxiliary quantities a and b are frequency independent. Therefore no sub-
script is needed to specify the frequency.

The ionosphere term can be eliminated by the following linear combination.
Multiplying the first equation of (5.76) by f; and the second by f, and forming the
difference yields

Difi — Dofo = a(ff - ) + Nifi = Nofp (5.78)

and, after multiplying the equation by f/( f12 - f22) and a slight rearrangement, the
ionosphere-free combination

f2 ] i f2 } A
O — =], = af1 + [Ny — =N, (579)
[ hol -5 hol -5
is obtained. Resubstituting for the geometry term a according to (5.77),
2 2
Fn—é®42ﬁ 2=ﬁ@+ﬁA&+Nrsém]2ﬂ 5 (5.80)
o=« =5

results for the ionosphere-free combination. The significant drawback of the com-
bination is that the integer nature of the ambiguities is lost since f>/f is not an
integer for current GNSS. Note that on the left side of the equation the geomet-
ric residual reappears, cf. Eq. (5.19). Thus, this quantity could also be denoted as
reduced ionosphere-free signal.

The derivation of the ionosphere-free combination for code pseudoranges starts
with the model equations

Ri=0+cAs+AP™,
(5.81)
— I
Ry=p0+cAd+AP™,
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where A" is inversely proportional to the squared respective carrier frequency,
cf. Eq. (5.64). Thus, multiplying the first equation of (5.81) by f12 and the second
by f22 and then forming the difference yields

Rif2 = Rof? = (f = A0 + c AS), (5.82)

where the ionosphere term is eliminated. After dividing the equation by ( f12 - f22)
and a slight rearrangement, the ionosphere-free combination

f } i
Ri—=SR)|———==0+cAd 5.83
{ 1 2 2 ey 0 (5.83)
is obtained.

The advantage of the ionosphere-free combination is the elimination (or more
precisely, the reduction) of ionospheric effects. Remembering the derivation, it
should be clear that the term “ionosphere-free” is not fully correct because there
are some approximations involved, for instance, Eq. (5.48) or the integration is not
carried out along the true signal path in (5.58). Brunner and Gu (1991) propose an
improved model to account for the higher-order terms arising from the series ex-
pansion of the refractive index, the geomagnetic field effect, and the bending effects
of the ray paths.

5.3.3 Tropospheric refraction

The effect of the neutral atmosphere (i.e., the nonionized part) is denoted as tro-
pospheric refraction, tropospheric path delay, or simply tropospheric delay. The
naming is slightly incorrect because the name excludes the stratosphere, which is
another constituent of the neutral atmosphere. However, the dominant contribution
of the troposphere explains the choice of the name.

The neutral atmosphere is a nondispersive medium with respect to radio waves
up to frequencies of 15 GHz. Thus, the propagation is frequency independent. Con-
sequently, a distinction between carrier phases and code ranges derived from dif-
ferent carriers is not necessary. The disadvantage is that an elimination of the tro-
pospheric refraction by dual-frequency methods is not possible.

The tropospheric path delay is defined by

ATOP — f (n-1dso, (5.84)

which is analogous to the ionospheric formula (5.55), where again an approxima-
tion is introduced so that the integration is performed along the geometric range.
Usually, instead of the refractive index n the refractivity

NToP = 105 (n - 1) (5.85)
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is used so that Eq. (5.84) becomes
AP = 107° f NP gy . (5.86)

Hopfield (1969) shows the possibility of separating NT™P into a dry and a wet
component,

T T
NTP = NP 4 NP, (5.87)

where the dry part results from the dry (hydrostatic) atmosphere and the wet part
from the water vapor. Correspondingly, the relations

A;rop — 10—6fN;r0P dso, (5.88)
A’vl;rop _ 10—6fN$r0P dso, (5.89)

and

Trop _ A Trop Trop
ATroP = ATP 4 ATH

—107° f NJ™ dso + 107 f NP g

are obtained. As mentioned in Sect. 4.1.2, about 90% of the tropospheric refraction
arises from the dry and about 10% from the wet component. In practice, models for
the refractivities are introduced in Eq. (5.90) and the integration is performed by
numerical methods or analytically by series expansions of the integrand. Models
for the dry and wet refractivity at the surface of the earth have been known for
some time (e.g., Essen and Froome 1951). The corresponding dry component on
the surface (indicated by the subscript 0) is

Nfg’l’ =C ? ¢ =77.64 Kmb!, (5.91)
where p is the atmospheric pressure in units of millibar (mb) and T is the tempera-
ture in kelvin (K). The wet component on the surface was found to be

e e
NTP _ &) R ¢y = —12.96 Kmb~!,

"0 r2 (5.92)
¢3=3.718-10° K*mb™',
where e is the partial pressure of water vapor in mb and 7" again the temperature in
K. The overbar in the coefficients only stresses that there is absolutely no relation-
ship to the coefficients for the ionosphere in, e.g., (5.47).

The values for ¢, ¢, and ¢3 are empirically determined and, certainly, cannot
fully describe the local situation. An improvement is obtained by measuring me-
teorological data at the observation site. The following paragraphs present several
models where meteorological surface data are taken into account.

(5.90)
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Fig. 5.4. Thickness of polytropic layers for the troposphere

Hopfield model

Using real data covering the whole earth, Hopfield (1969) has empirically found a
representation of the dry refractivity as a function of the height /2 above the surface
by

ha—h]*
Ny ) = Nyg® | = ] (5.93)
’ d
under the assumption of a polytropic layer with thickness
hg =40136 + 148.72(T — 273.16) [m], (5.94)

as shown in Fig. 5.4. Substitution of (5.93) into (5.88) yields (for the dry part) the

tropospheric path delay

hqg—h
ha

The integral can be solved if the delay is calculated along the vertical direction and

if the curvature of the signal path is neglected. Thus, Eq. (5.95) becomes

Trop _ —6 sITop
AY™® =10 N [

4
y ] dso . (5.95)

ha
IO — Io 1
AS® =100 NP 3 f(hd —h)* dh, (5.96)
d
0

where the lower limit 4 = 0 corresponds to an observation site on the surface of the
earth and where the constant denominator has been extracted. After integration,

1 1

h=hq
Trop _ —6 a71Top
AS® =100 N h—[—g

y - |-zha = 1y (5.97)
d

h=0
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is obtained. The evaluation of the expression between the brackets gives h(si /5 so
that

Trop _ 10_6 NTrop h 508
d = 5 d0 d ( . )

A

is the dry portion of the tropospheric zenith delay.

The wet portion is more difficult to model because of the strong variations of
the water vapor with respect to time and space. Nevertheless, due to lack of an
appropriate alternative, the Hopfield model assumes the same functional model for
both the wet and dry components. Thus,

hy -
N () = NP [h—} : (5.99)
w
where the mean value
h,, = 11000 m (5.100)

is used. Sometimes other values such as 4,, = 12 000 m have been proposed. Unique
values for h; and h,, cannot be given because of their dependence on location and
temperature. In Germany, a local model for estimating the tropospheric path de-
lay at microwave frequencies using radiosonde data over 4.5 years yielded for the
region of the observation site #; = 41.6 km and 4,, = 11.5 km. The effective tropo-
sphere heights are given as 40km < h; < 45km and 10km < h,, < 13 km.

The integration of (5.99) is completely analogous to (5.95) and results in

ATrop — 10_6

" = N0 e (5.101)

Therefore, the total tropospheric zenith delay is

1076
Ti _ Trop Trop
AT = —— [N §" ha + NP b (5.102)

in units of meters. The model in its present form does not account for an arbitrary
zenith angle of the signal. Considering the line of sight, an obliquity factor must be
applied which, in its simplest form, is the projection from the zenith onto the line of
sight. Frequently, the transition of the zenith delay to a delay with arbitrary zenith
angle is denoted as the application of a mapping function.

Introducing the mapping function, Eq. (5.102) becomes

107°
ATroP — — [NGo? hama(E) + NP hyy my(E)|. (5.103)
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where m;(E) and m,,(E) are the mapping functions for the dry and the wet part and
E (expressed in degrees) indicates the elevation angle at the observing site (where
the line of sight is simplified as straight line). Explicitly,

|
sin VEZ + 6.25

1
sin VE2 +2.25

are the mapping functions for the Hopfield model. In more compact form, (5.103)
is represented as

my(E) =
(5.104)
my(E) =

ATP(E) = AJ(E) + A(E), (5.105)
where the terms on the right side of the equation are given by

106 NygPh

AS(E) = :
d 5 sin VEZ+625
(5.106)
Trop
10-6 N, o hw
ATy = 10

5 sin VE2 +225
or, after substituting (5.91), (5.94) and (5.92), (5.100) respectively, by

107 .64
0 71.6 P 140136 + 14872 (T - 273.16)],

ATrop(E):
d 5 sinVE2+625 T

1070 (-12.96 T +3.718 - 10°
ATor gy = 10 ) € 11000.

5 sin VE2 +2.25 T2

(5.107)

Measuring p, T, e at the observation location and calculating the elevation angle E,
the total tropospheric path delay is obtained in meters by (5.105) after evaluating
(5.107).

Modified Hopfield models

The empirical function (5.93) is now rewritten by introducing lengths of position
vectors instead of heights. Denoting the radius of the earth by R,, the corresponding
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> geocenter

Fig. 5.5. Geometry for the tropospheric path delay

lengths are ry; = R, + hg and r = R, + h (Fig. 5.5). Thus, the dry refractivity in the
form

4
NPy = TP [ ra=r ] (5.108)
d

is equivalent to (5.93). Applying Eq. (5.88) and introducing the mapping function
1/ cos z(r) gives the dry path delay

1
d
cos z(r) d

rad
ATP() = 10 f N () (5.109)
R,

e

for an observation site on the surface of the earth. Note that the zenith angle z(r) is
variable. Denoting the zenith angle at the observation site by zg, the sine-law

R
sinz(r) = — sinzg (5.110)
r
can be applied (Fig. 5.5). From Eq. (5.110) follows

2

R
cosz(r) = y[1 - = sin’zg , (5.111)
I
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which is equivalent to
1 2 qin2
cosz(r) = — 4/r? — RZ sin“zg . (5.112)
r

Substituting (5.112) and (5.108) into (5.109) yields

rd

6 Trop
Trop 10 N r (rd - l")4
Ad (Z) (r _ )4
d= e A2 — R%sin’z

where the terms being constant with respect to the integration variable r have been
extracted from the integral. Assuming the same model for the wet portion, the cor-
responding formula is given by

(5.113)

—6 a7lrop  Tw
ATrop( ) = 10 NW,O r(ry — I’)4
" (rw - Re)4

dr. (5.114)
k1 — R2sin’z

Instead of the zenith angle z the elevation angle E = 90° —z can also be used. Many
modified Hopfield models have been derived, depending solely on the method to
solve the integral. Here, one model is presented based on a series expansion of the
integrand. The resulting formulas can be found, e.g., in Remondi (1984), where a
subscript i is introduced which reflects either the dry component (replace i by d) or
the wet component (replace i by w). With

ri = V(Re + hj)> = (R, coSE)2 —R, sinE (5.115)

the tropospheric delay in meters is

ATP(E) = 10712 N [29: C% f‘} , (5.116)
k=1
where
ap;i=1, @i = 4a; b (a? +3by),
@y = 4a;, a7, = b? (6a? + 4b;),
s =6a’ +4b;, =4a; b, (5.117)
as; = 4a; (@ +3by), y; = bf ,

as; =a’ + 12a7 b; + 6b7
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and

sin £ cos’E
- ’ b = — . 5.118
i ! 2h; R, ( )

Substituting i by d, the dry part results, for which in (5.116) for N;rgp Eq. (5.91) and

for hy Eq. (5.94) must be introduced. Analogously, Egs. (5.92) and (5.100) must be
Trop

used for N, " and for h,,.

Saastamoinen model

The refractivity can alternatively be deduced from gas laws. The Saastamoinen
model is based on this approach where again some approximations have been em-
ployed (Saastamoinen 1973). Here, any theoretical derivation is omitted. Saasta-
moinen models the tropospheric delay, expressed in meters,

0.002277 1255
ATrop _ = [p +( —+ 0.0S)e - tan2z], (5.119)
SZ

as a function of z, p, T and e. As before, z denotes the zenith angle of the satellite,
p the atmospheric pressure in millibar, T the temperature in kelvin, and e the partial
pressure of water vapor in millibar. A numerical assessment using parameters of a
standard atmosphere at sea level (p = 1013.25 millibar, T = 273.16 kelvin, and
e = O millibar) results in a tropospheric zenith delay of about 2.3 m.

Saastamoinen has refined this model by taking into account two correction
terms, one being dependent on the height of the observing site and the other one on
both the height and the zenith angle. The refined formula is

0022 12
ptrop _ 0002277 [p + ( 3 0.05) e — B tan’z
cosz T

+0R, (5.120)

where the correction terms B, SR are interpolated from Tables 5.4 and 5.5.

Models using the mapping function of Marini

In 1972, Marini developed a continued fraction of the mapping function. Her-
ring (1992) specified this function with three constants and normalized to unity
at the zenith. For the dry component, the mapping function

aq
b
1+ d
1 + cq

1+

my(E) =

(5.121)
sin E +

sinf + ———
sinE + ¢4
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Table 5.4. Correction term B for the
refined Saastamoinen model

Height [km] B [mb]
0.0 1.156
0.5 1.079
1.0 1.006
1.5 0.938
2.0 0.874
2.5 0.813
3.0 0.757
4.0 0.654
5.0 0.563

is used, where the coeflicients are defined as
ag =[1.2320 + 0.0139 cos ¢ — 0.0209 /1 + 0.00215 (T — 283)] - 1073,
by =[3.1612 — 0.1600 cos ¢ — 0.0331 & + 0.00206 (T — 283)] - 1073,
cq =[71.244 — 4293 cos ¢ — 0.149 h — 0.0021 (T — 283)] - 1073
(5.122)

depending on the latitude ¢ and height /4 in kilometer of the observing site and on
the temperature 7T in kelvin.

For the wet part, the mapping function is the same as in (5.121) but the subscript
d must be replaced by w. The corresponding coeflicients are obtained as

a, =1[0.583 — 0.011cos ¢ — 0.052 1 + 0.0014 (T — 283)] - 1073,
by, = [1.402 — 0.102 cos ¢ — 0.101 & + 0.0020 (T — 283)] - 1073,
¢ =[45.85—1.91cosp — 1297+ 0.015(T —283)] - 1073
(5.123)

Niell (1996) uses the same type of mapping function as Herring, i.e., the con-
tinued fraction of the Marini mapping function restricted to three coefficients. The
coeflicients for the dry part depend on the latitude and the height at the observing
site and on the day of the year, whereas the coefficients for the wet part depend only
on the site latitude. Numerical values of the coeflicients are given for some specific
latitudes in Niell (1996). Interpolation must be used to obtain the coefficients for
arbitrary latitudes and days.
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Table 5.5. Correction term 6R [m] for the refined Saastamoinen model

Zenith Station height above sea level [km]
angle 0 0.5 1.0 1.5 2.0 3.0 4.0 5.0

60°00’| 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001
66°00"| 0.006 0.006 0.005 0.005 0.004 0.003 0.003 0.002
70°00"| 0.012 0.011 0.010 0.009 0.008 0.006 0.005 0.004
73°00"| 0.020 0.018 0.017 0.015 0.013 0.011 0.009 0.007
75°00"| 0.031 0.028 0.025 0.023 0.021 0.017 0.014 0.011
76°00"| 0.039 0.035 0.032 0.029 0.026 0.021 0.017 0.014
77°00"| 0.050 0.045 0.041 0.037 0.033 0.027 0.022 0.018
78°00"| 0.065 0.059 0.054 0.049 0.044 0.036 0.030 0.024
78°30"| 0.075 0.068 0.062 0.056 0.051 0.042 0.034 0.028
79°00’| 0.087 0.079 0.072 0.065 0.059 0.049 0.040 0.033
79°30"| 0.102 0.093 0.085 0.077 0.070 0.058 0.047 0.039
79°45’) 0.111  0.101 0.092 0.083 0.076 0.063 0.052 0.043
80°00"| 0.121 0.110 0.100 0.091 0.083 0.068 0.056 0.047

The transition to tropospheric models is achieved by substituting the mapping
functions given in this paragraph into models for the zenith delay, e.g., Eq. (5.103).

Tropospheric problems

There are many other tropospheric models which are similar to the models given
here. Janes et al. (1991) and Spilker (1996b) analyze several other tropospheric
models. The question arises why there are so many different approaches. One rea-
son is the difficulty in modeling the water vapor. The simple use of surface mea-
surements cannot give the utmost accuracy so that water vapor radiometers have
been developed. These instruments measure the sky brightness temperature by ra-
diometric microwave observations along the signal path enabling the calculation of
the wet path delay. Accurate water vapor radiometers are expensive and experience
problems at low elevation angles since the tropospheric zenith delay is amplified
by the mapping function.

The difficulty in modeling the tropospheric effect will require continuation of
research and development for many years. One solution is to combine surface and
radiosonde meteorological data, water vapor radiometer measurements and statis-
tics. This is a major task and an appropriate model has not yet been found.

Any standard model suffers from the estimation of the zenith delay from mea-
sured ground parameters. Another approach is to estimate the zenith delay in the
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least-squares adjustment of the phase observations in a network. Some processing
software programs offer this option. Usually one zenith delay for each site and ses-
sion is estimated; however, it is good practice to estimate more than one zenith
delay per session (Brunner and Welsch 1993).

For local networks, the strong correlation between the tropospheric delay and
the station height may be exploited if, apart from the reference station, a calibra-
tion station is introduced. This is especially meaningful for landslide monitoring
where the reference and the calibration station must be situated in stable bedrock.
RithrnoBl et al. (1998) describe a correction model yielding a height correction term
being calculated from the reference and the calibration station and assuming a lin-
ear behavior of the tropospheric delay between the two stations. More details are
found in Gassner and Brunner (2003) and Schon et al. (2005).

5.3.4 Atmospheric monitoring

Ionospheric tomography

Tomography has developed from a medical diagnostics tool, commonly denoted
as computer tomography, to become an imaging technique for many applications,
including geodesy and geophysics (Leitinger 1996). Referring to ionospheric to-
mography, the line integral of electron density, i.e., the TEC, is measured over a
large number of ray paths transitioning the ionosphere. This dataset is inverted to
produce an image of electron density in ionosphere maps.

More GNSS-specifically, TEC monitoring is possible using satellite-based po-
sitioning systems (Jakowski 1996). As one representative example, the Center for
Orbit Determination in Europe (CODE) estimates global ionosphere maps (GIM)
as an additional product since January 1, 1996. The main idea is to analyze the
ionospheric residuals of dual-frequency phases, cf. (5.21), which contain the infor-
mation on ionospheric refraction. Following closely Schaer (1997, 1999), the TEC
is developed into a series of spherical harmonics adopting a single-layer model
in a sun-fixed reference frame. For each day, a set of TEC coefficients is deter-
mined which approximates an average distribution of the vertical TEC on a global
scale. The GIM produced may contribute to improve the ambiguity resolution, as
demonstrated in the CODE processing. Also spaceborne applications, e.g., satel-
lite altimetry, may benefit from the TEC maps. For ionosphere physicists, these
maps are an alternative source of information about the deterministic behavior of
the ionosphere that may be correlated with solar and geomagnetic parameters and
compared to theoretical ionosphere models. All details on how to use the maps are
given under www.cx.unibe.ch/aiub/igs.html.

The GIM are based on the single-layer model in Fig. 5.3. The electron density
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of the surface is modeled by

Nmax N
TVEC(B, Ad) = Z Z [ COS AL + By sin MAA] Pyy(sin B)

n=0 m=0
(5.124)

yielding the total vertical electron content as a function of the ionospheric point
expressed by the geocentric latitude 8 and the longitude difference Al = 1 — Ay
between the earth-fixed longitude A and the longitude of the sun Ag. The coefficients
anm and b, are the coefficients to be determined representing the parameters of the
GIM. Finally, P,,,(sing) are the fully normalized associated Legendre functions of
degree n and order m (Hofmann-Wellenhof and Moritz 2006: Sects. 1.7 and 1.10).

If the solar-geographical reference frame refers to the mean sun (i.e., a fictitious
sun uniformly rotating in the equator), the geographic longitude of the sun may be

written in function of the universal time (UT)
Ao =12"-UT (5.125)

and the latitude of the sun is set to zero. Note that TVEC(8, A1) may equivalently
be expressed in the solar-geomagnetic frame.

The global ionosphere maps are generated on a daily basis by CODE. The TEC
(more precisely, TVEC) is modeled with a spherical harmonic expansion up to de-
gree n = 12 and order m = 8 referring to a solar-geomagnetic reference frame. Each
day, twelve 2-hour sets are derived from data of the global IGS network (Sec. 3.4.1).
From Schaer (1997) some statistical values are given: the maximum and minimum
values in TEC units (TECU) for day 73 of 1996 are

TVECumax (8, A1) = TVEC(-7.60°,45.37°) = 35.79 TECU,

TVECin(8, A1) = TVEC(60.91°,-106.64°) = 0.34 TECU,

and the mean TECU, averaged from the one-day GIM, roughly describes the evo-
lution of the ionospheric activity in a global sense and varies for a 28-month time
span starting with January 1, 1995 between about 6 and 18 TECU.

Apart from the global ionosphere maps, also regional ionosphere maps based
on some 30 European IGS stations are provided for Europe. The application is
restricted to the corresponding definition area.

Troposphere sounding

Reliable information on global climate change processes over future decades and
better weather forecasting on near- and medium-term time scales are only possible
on the basis of global and regional data records. These data are used to accurately
model atmospheric state parameters with high spatial and temporal resolution.
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Water vapor is one of the most significant constituents of the troposphere. This
parameter plays a fundamental role with regard to weather and climate since it has
the capability to transport moisture and heat through the atmosphere. Meteorolo-
gists have started to use GNSS as a low-cost tool for measuring the water vapor.
Thereby, tropospheric refraction (in the past considered as nuisance parameter) has
become a well appreciated signal.

The tropospheric zenith delay is estimated during data processing. The dry
component can be computed with high accuracy based on surface meteorologi-
cal data; the remaining wet component is a function of the water vapor in the at-
mosphere. Short-periodic variations of the integrated water vapor (IWV) improve
numerical weather prediction, whereas long-periodic variations have impact on cli-
mate research. More details on the subject are found in Bevis et al. (1992) and
Gendt et al. (1999). An operational ground-based water vapor observing system
using zenith delay measurements is described in Wolfe and Gutman (2000).

CHAMP mission

The challenging minisatellite payload (CHAMP) mission is used for geophysical
research and application. The mission started in 2000 and was scheduled to last five
years in order to provide a sufficiently long observation time to resolve long-term
temporal variations in the magnetic field, in the gravity field, and within the atmo-
sphere. Some specifications of the satellite of this mission: altitude 300-470 km,
inclination 87.3 degree, eccentricity 0.001.

The measurable refractional effects on GNSS signals propagating through the
atmospheric limb may be used to derive profiles for a variety of atmospheric pa-
rameters. lonospheric refraction is used for the derivation of electron density in
profiles between 60 km and the CHAMP orbital height. In conjunction with TEC
measurements from a network of terrestrial stations, a comprehensive model of the
ionosphere is possible with high resolution in space and time. Refractional effects
in the atmosphere ranging from the earth surface up to about 60 km altitude (bend-
ing of signal path, tropospheric path delay) give rise to profiles for meteorological
parameters (density, pressure, temperature, water vapor). The final objective of the
CHAMP mission has been the determination of all these parameters in (near) real
time.

More on CHAMP may be found under http://op.gfz-potsdam.de/champ of the
GeoForschungsZentrum Potsdam, Germany, where the information of this section
has been extracted from.
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5.4 Relativistic effects

5.4.1 Special relativity

Lorentz transformation

Consider two four-dimensional systems S (x,y,z,t) and S’(x’,y’,7,¢'), where the

union of space coordinates x, y, z and the time coordinate ¢ characterizes space-

time coordinates. The system S is at rest and, relative to S, the system S’ is uni-

formly translating with velocity v. For simplicity, it is assumed that both systems

coincide at an initial epoch # = 0 and that the translation occurs along the x-axis.
The transformation of the space-time coordinates is given by

XxX—vut
X = —,
U2
-2
Y =y,
(5.126)
7 =z,
_ v
{ = -2
v? ’
-2

where c is the speed of light. Note that the equations above describe the moving sys-
tem S’ with respect to the system S at rest (more figuratively: as viewed from the
moving system). Equivalently, the system § at rest may be described with respect
to the moving system S’ (more figuratively: as viewed from the system at rest).
The corresponding formulas follow by solving Eq. (5.126) for the space-time co-
ordinates in the system S at rest or simply by interchanging the role of the primed
and the unprimed coordinates and reversing the sign of the velocity v. Thus, the
relations

3 x +ot
27
-z
y=y.
) (5.127)
Z:Z b
VL
t = <
v2
a2

are obtained. Equations (5.126) and (5.127) are known as Lorentz transformation.
An elegant and simple derivation of these formulas can be found in Joos (1956:
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p- 217) or in Moritz and Hofmann-Wellenhof (1993: Sect. 4.1). Using Eqgs. (5.126)
or (5.127), the relation

P+ +2 =P =Xty - (5.128)

may be verified. This means that the norm of a vector in space-time coordinates is
invariant with respect to the choice of its reference system. Note that in the case of
¢ — oo, the Lorentz transformation (5.126) converts to the Galilei transformation

X =x-vt,
y =y,
(5.129)
7 =z,
Y =t,

which is fundamental in classical Newtonian mechanics.
The theory of special relativity is, by definition, restricted to inertial systems.
The application of the Lorentz transformation reveals some features of that theory.

Time dilation
Consider an observer moving with the system S’. At a specific location x” the time
events 7 and ) are recorded. The corresponding time events 7, and ¢, in the system
S at rest, according to Lorentz transformation (5.127), are
i+ 5x th+ 5
h=—F——: h=—F—=" (5.130)

2 2

1-5 1-5
The time interval A" = ) — ¢ in the moving system is called proper time and
the time interval At = r, — #; in the system at rest is called coordinate time. The
relation between proper and coordinate time is found by the difference of the two
expressions in (5.130) yielding

A ’
A= 20 (5.131)

which means that as viewed at the system at rest, the time interval recorded by the
moving observer is lengthened or dilated. The same holds for the inverse situation: a
time interval recorded by an observer in the system at rest is dilated for an observer
in the moving system. The result A? = At/+/1 —v2/c? may be verified by the
reader by using Eqgs. (5.126) or is simply obtained by interchanging the role of the
primed and the unprimed coordinates in (5.131) (reversing the sign of v has here no
effect because this quantity is squared). The time dilation is the reason why moving
clocks run slower than clocks at rest.
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Lorentz contraction

The derivation of the Lorentz contraction is similar to that of time dilation. Consider
now two locations x| and x} in the moving system S’ at a specific epoch #'. The
corresponding locations x; and x; in the system S at rest, according to the Lorentz
transformation (5.127), are

x’1+vt’ x’2+vt’
X = ——, Xy = ——.
1 > 2 > (5.132)

Using the abbreviations Ax = x; — x; and Ax" = x, — x{, the difference of the two
expressions in (5.132) gives

A 4
Ax= —=% (5.133)

which means that as viewed from the system S at rest, Ax’ is lengthened to Ax.
Expressing it in another way, the dimension of a body moving with the observer in
the system S’ seems to be contracted.

Second-order Doppler effect

Since frequency is inversely proportional to time, one can deduce immediately from
the considerations on time dilation the formula

2
r=r 1—0—2, (5.134)
C

which means that the frequency f” of a moving emitter would be reduced to f. This
is the second-order Doppler effect.

Mass relation

Special relativity also affects masses. Denoting the masses in the two reference
frames S and S’ by m and m’, respectively, then

m=——-— (5.135)

is the corresponding mass relation.

The previous formulas include the same square root. Expansion into binomial series
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(5.136)

which may be substituted accordingly into Egs. (5.131) through (5.135). Related to
an observer at rest,

(5.137)

A=At AX -Ax  f'—f m-m _ 1(0)2
At Ax f m 2

c

accounts for the mentioned effects of the special relativity in one formula.

5.4.2 General relativity

The theory of general relativity includes accelerated reference systems too, where
the gravitational field plays the key role. Formulas analogous to (5.137) may be
derived if the kinetic energy v?/2 in special relativity is replaced by the potential
energy AU. Thus,

A — At AX - A /- ’ - AU
A A o _mom AU (5.138)
At Ax f m c?

represents the relations in general relativity, where AU is the difference of the grav-
itational potential in the two reference frames under consideration.

5.4.3 Relevant relativistic effects for GNSS

The reference frame (relatively) at rest is located in the center of the earth and
an accelerated reference frame is attached to each GNSS satellite. Therefore, the
theory of special and general relativity must be taken into account. Relativistic ef-
fects are relevant for the satellite orbit, the satellite signal propagation, and both
the satellite and receiver clock. An overview of all these effects is given for exam-
ple in Zhu and Groten (1988). The relativistic effects on rotating and gravitating
clocks is also treated in Grafarend and Schwarze (1991). With respect to general
relativity, Ashby (1987) shows that only the gravitational field of the earth must be
considered. The relativistic influence of sun and moon and consequently all other
masses in the solar system is negligible. Deines (1992) investigates the uncompen-
sated effects if the noninertial GNSS observations are not transformed to an inertial
frame.
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Ashby (2003) extensively discusses the relativistic principles and effects which
must be considered for space-based navigation. Among others, frequency jumps
arising from orbit adjustments have been identified as relativistic effects. Several
secondary relativistic effects at the level of a few centimeters (which corresponds
to 100 picoseconds of delay) are mentioned: the Shapiro signal propagation delay,
the space-time curvature effect on a geodetic distance, the effect of other solar sys-
tem bodies. Furthermore, the phase wind-up (sometimes also denoted as wrap-up)
is another secondary effect. The electric field vector of the satellite-transmitted sig-
nal rotates with an angular frequency. Supposing a rapidly spinning receiver (with
another angular frequency), the received frequency is composed of the two angu-
lar frequencies. This also translates to an accumulation of phase and is, therefore,
called phase wind-up.

Relativity affecting the satellite orbit

The gravitational field of the earth causes relativistic perturbations in the satel-
lite orbits. An approximate formula for the disturbing acceleration is given by
Eq. (3.32). For more details see Zhu and Groten (1988).

Relativity affecting the satellite signal

The gravitational field gives rise to a space-time curvature of the satellite signal.
Therefore, a propagation correction must be applied to get the Euclidean range for
instance. The range correction (expressed in meters) may be represented in the form

2 S+o0,+0°¢
_,uan Or + 0y

6rel — ,
o tor-or

(5.139)

where u = 3986004.418 - 108 m3s72 is the earth’s gravitational constant (see
Sect. 3.2.1). The geocentric distances of satellite s and observing receiver site r
are denoted o* and o,, and o7 is the distance between the satellite and the observing
receiver site. In order to estimate the maximum effect for a point on the surface
of the earth take the mean radius of the earth R, = 6370km and an altitude of
h = 20000km for the satellites. The maximum distance o} = (R, + h)?> — R2
results from the Pythagorean theorem and is about 25 600 km. Substituting these
values, the maximum range error 6™ = 18.6mm results from (5.139). Note that
this maximum value only applies to point positioning. In relative positioning, the
effect is much smaller and amounts to 0.001 ppm (Zhu and Groten 1988).

Relativity affecting the satellite clock

Assume a nominal frequency fy = 10.23 MHz of the satellite clock. This frequency
is influenced by the motion of the satellite and by the difference of the gravitational
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field at the satellite and the observing site. The corresponding effects of special and
general relativity are small and may be linearly superposed. Thus,

6rel

Jo—Jfo 1 (v)2+£
Jo A (5.140)

—— ——
special and general relativity

is the effect on the frequency of the satellite clock, where Eqs. (5.137) and (5.138)
have been used. To get a numerical value, circular orbits and a spherical earth with

the observing site on its surface are assumed. Introducing these simplifications,
(5.140) takes the form

6rel

EOR

with v being the mean velocity of the satellite. Substituting the numerical value
h = 20000 km, which according to (3.9) corresponds to v ~ 3.9 km s yields

fo—Jo

0

Re+h_ITe

: : }, (5.141)

= —4.464-10719,

which, despite the simplifications, is sufficiently accurate. The influence of the
earth’s oblateness, investigated by Ashby (2001), causes a periodic fractional fre-
quency shift with a period of almost six hours and an amplitude of 0.695 - 10714,
Recall that f; is the emitted frequency and fj is the frequency received at the ob-
servation site. Thus, it can be seen that the satellite-transmitted nominal frequency
would be increased by df = 4.464-107'° fy = 4.57-1073 Hz. However, it is desired
to receive the nominal frequency. This is achieved by an offset df in the satellite
clock frequency, so that 10.22999999543 MHz are emitted.

Another periodic effect arises due to the assumption of a circular orbit and
may be denoted as eccentricity correction. An adequate formula for the correction
(expressed in seconds) is given by

2
6 = —= \ua(e sinE), (5.142)
C

where e denotes the eccentricity, a the semimajor axis, and E the eccentric anomaly
of the satellite orbit.
Substituting (3.36) into (5.142) yields an alternative but equivalent form

2 ,
=500, (5.143)

where @° and @° are the instantaneous satellite position and velocity vector, respec-
tively.
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A further representation of (5.142) is
5 = Feva sinE, (5.144)

where F' = -2 +/u/ ¢2 has been introduced.

This relativistic effect may be included in the clock polynomial (see Eq. (6.4))
broadcast via the navigation message, where the time-dependent eccentric anomaly
E is expanded into a Taylor series. However, this means that the correction must be
implemented in the receiver software. Ashby (2003) would prefer an incorporation
of this correction into the time broadcast by the satellites.

In the case of relative positioning, the effect cancels (Zhu and Groten 1988).

Relativity affecting the receiver clock

A receiver clock located on the surface of the earth is rotating with respect to the
resting reference frame at the geocenter. The associated linear velocity at the equa-
tor is approximately 0.5kms~! and, thus, roughly one tenth of the velocity of the
satellite. Substituting this value into the special relativistic part of Eq. (5.140) yields
a relative frequency shift in the order of 1072 which after 3 hours corresponds to a
clock error of 10 nanoseconds (1 ns = 107?s = 30 cm).

Due to the rotation of the earth (causing a rotation of the receiver clock) while
the signal is propagating from the satellite to the receiver on the earth, a relativistic
effect is introduced known as Sagnac effect (Conley et al. 2006: p. 307). Following
Su (2001), the Sagnac effect can be modeled by

1
o' = . (0, —0°) (0, XQ,), (5.145)

where c is the speed of light, @, and @* are the geocentric position vectors of the re-
ceiver and the satellite, respectively (Fig. 1.1), and o, is the earth’s rotation vector.
Introducing

S=1@'xe,), (5.146)

the area of the triangle with vertices at the satellite, the receiver, and the center of
the earth, the Sagnac effect may also be written as

2
o' = ES 0, . (5.147)

Corrections of the Sagnac effect are also referred to as earth rotation corrections.
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5.5 Antenna phase center offset and variation

5.5.1 General remarks

Assuming an idealized situation, then the electrical phase center of the antenna is
the point to which all measurements derived from received GNSS signals refer.
Usually, this will not be a point which may be accessed (e.g., by a tape measure-
ment). Therefore, a geometrical point on the antenna denoted as antenna reference
point (ARP) is introduced (Fig. 5.6). The IGS has defined the ARP as the intersec-
tion of the vertical antenna axis of symmetry with the bottom of the antenna.

However, this idealized situation does not reflect the reality because the elec-
trical antenna phase center varies with elevation, azimuth, intensity of the satellite
signal, and is also frequency-dependent. In other terms, each incoming signal has
its own electrical antenna phase center. Therefore, a mean position of the electrical
antenna phase center is determined for the purpose of the offset calibration.

The antenna phase center offset (PCO) defines the difference between the ARP
and the mean electrical antenna phase center.

Usually, the antenna PCO is given by three-dimensional coordinates of the
electrical antenna phase center referring to the ARP and should be provided by
the manufacturer; if not, the determination of these coordinates is carried out by
a calibration procedure (Gorres et al. 2006). Note that due to the dependence on
frequency the antenna PCO must be given for each carrier frequency.

Comparing now the electrical antenna phase center of an individual measure-
ment with the mean electrical antenna phase center, a deviation will arise. These

mean electrical

satellite satellite o
\Qo
antenna phase center

PCV

antenna

antenna height T
Y

Fig. 5.6. Electrical phase center and antenna reference point

tripod
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deviations are denoted as antenna phase center variations (PCV). The azimuth- and
elevation-dependent PCV define the phase pattern (individually for each carrier
frequency).

The total antenna phase center correction for an individual phase measurement
is composed of the influence by the PCO plus the azimuth- and elevation-dependent
PCV.

Introducing for the PCO the vector a as indicated in Fig. 5.6 and the unit vector
0, between the satellite and the receiver, Apco, the influence of the PCO on the
phase measurement, may be obtained as the projection of a onto the unit vector g,
between the satellite and the receiver, thus

Apco =a-Qq. (5.148)

The influence of PCV on the phase pseudorange, denoted as Apcy, is described
by a function depending on the azimuth @ and the zenith angle z of the satellite, and
of the carrier frequency f:

Apcv = Apcv(@, 7, f) . (5.149)

The total correction of the phase pseudorange due to PCO and PCV is the com-
bined effect Apco + Apcy. Applying this total correction, the phase pseudoranges
refer to the ARP. In other terms, the coordinates of the ARP will result after pro-
cessing the measured data properly. As seen from Fig. 5.6, the resulting height
component must still be reduced by the antenna height.

The PCV is systematic and can be determined by test series. Variations can
amount to 1-2 cm horizontally and up to 10 cm vertically (Mader 1999). However,
it is fairly difficult to model the PCV because it is different for each antenna and also
for various types. Geiger (1988) shows the different characteristics of conical spi-
ral antennas, microstrip antennas, dipole antennas, and helices. As a consequence,
the direct computation of the antenna effects on the distance measurements with
respect to azimuth and elevation was proposed. Simple functions for an appropriate
modeling may also be found by laboratory tests (Schupler and Clark 1991), e.g., in
an anechoic chamber.

The geometric effect of the antenna orientation on the carrier phase is investi-
gated by Wu et al. (1993). The observed carrier phase depends on the orientation of
the antennas of the transmitter and the receiver as well as the direction of the line
of sight. Wu et al. (1993) demonstrate that the effect does not cancel for double-
differences and may amount to 1 part in 10°.

Campbell et al. (2004) investigate the accuracy of antenna calibrations using
laboratory measurements. Rothacher (2001b) compares relative and absolute an-
tenna PCV, which is treated in some more detail in the next two sections.
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5.5.2 Relative antenna calibration

Now the question arises how to establish proper calibration models. One option
is a relative antenna calibration which means that field measurements are used to
determine the relative antenna phase center position and PCV with respect to a
reference antenna as carried out at the US National Geodetic Survey (Mader 1999).

The principle of the relative antenna calibration is simple. The test range is a
5 m baseline equipped with two stable concrete piers. Antenna-mounting plates are
permanently attached to these piers. The reference antenna (always the same!) is
placed on one of the piers, the test antenna on the other.

As will be shown in Sect. 5.5.4 in a numerical investigation, the average phase
center location is a function of the elevation cutoff angle. For each frequency indi-
vidually, the average phase center location (relatively to an a priori known position)
is determined where no PCV or tropospheric scale factor is taken into account.

Where does the a priori information come from? Note that the reference antenna
has been placed on the test pier in order to determine the location of this antenna’s
phase centers (separately for frequency 1 and 2). These positions are then used as
the a priori positions for the frequency 1 and frequency 2 phase centers of the test
antenna (Mader 1999).

Referring to the a priori values, the average phase center location may be re-
garded as relative PCO.

As mentioned earlier, Mader (1999) does not determine an azimuthal compo-
nent of the PCV, only elevation dependence is considered. Without describing de-
tails, basically single-difference phase residuals are formed by constraining the test
antenna to its previously determined mean (average) PCO. Then a least-squares so-
lution for a fourth-order polynomial is used for each measurement epoch to account
for a clock offset and the elevation dependence. Again, this procedure is separated
for each frequency.

The polynomial coefficients for each measurement are now the tool to correct
the observed phase data. Using the elevation of the satellite and the corresponding
measurement epoch, the correction quantity may be calculated from the fourth-
order polynomial and applied to the measured phase.

5.5.3 Absolute antenna calibration

The relation to a reference antenna was the key feature of the relative antenna
calibration. Considering absolute antenna calibration in the sense of Wiibbena et
al. (1997, 2000) and Menge et al. (1998), the term ‘“absolute” indicates that the
PCYV are determined independently from a reference antenna. However, the size of
the absolute phase pattern cannot be determined, “only the topology” (Wiibbena
et al. 1997). The reason is that relative observables are used. To model the PCV,
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a continuous and periodic function in the horizontal and vertical directions (refer-
ring to a local-level coordinate system) is required to describe the PCV depending
on the azimuth and the elevation (or the zenith angle, respectively) of the satellite.
Rothacher et al. (1995) propose a spherical harmonic function in the form

[

Apcv(@, 2) = Z Z(A,,m cOS Mm@ + By $in ma) Ppy(cos z) (5.150)

n=0 m=0

where Apcy(a, z) is the PCV depending on the azimuth @ and the zenith angle
z. On the right-hand side, A,,, and B,,, are the coefficients to be determined and
P,m(cos z) are Legendre’s functions. For more details on harmonic functions and
Legendre’s functions see Hofmann-Wellenhof and Moritz (2006: Chap. 1).

Supposing for a moment known coefficients A,,, and B,,,, then Apcy(@, z) may
be calculated for arbitrary @ and z. If there are sufficient measurement quantities
Apcv(a, z) available, the coefficients can be estimated by the least-squares adjust-
ment method.

However, multipath must be taken into account. This effect can be tackled by
the basic idea to use repeated satellite constellation (e.g., after one sidereal day in
the case of GPS). As will be shown in Sect. 5.6, if the site conditions remain un-
changed, the multipath effect repeats with the same satellite ground track repeat
periods. Therefore, forming differences of the observations with repeated satellite
constellation, then the effect of the multipath will be removed. However, the PCV
would also be eliminated if the satellite signal is received with the same antenna ori-
entation. This is avoided by tilting and rotating the antenna on one of the two days.
Now the difference of the PCV values of the two days is the measurement value
(which will be in general not zero). The measurement of the first day is regarded as
“zero position” of the reference day. Thus, the resulting measurement quantity, the
input for the left-hand side of (5.150), is a difference of two antenna orientations
PCV (which indicates the problematic interpretation of the term “absolute”).

As shown in Wiibbena et al. (2000), the rotations and tilts of the antenna have
been automated by a precisely controlled motion of a calibrated robot. This automa-
tion process enables several thousand different antenna orientations to eliminate the
multipath and determine the PCV adequately. Additionally, the PCV values are in-
dependent of the “polar holes” (Seeber 2003: p. 322) which otherwise occur as
may be seen from Fig. 5.7. The high amount of orientation measurements is re-
quired to determine a high-resolution PCV model according to (5.150). Wiibbena
et al. (2000) use 6 000 to 8 000 different orientations for one calibration process.

For some antenna types, large azimuthal PCV have been demonstrated. The
method depending on elevation only as described in the previous section does not
account for the azimuth-dependent information, which might be disadvantageous
in case of very high accuracy requirements.
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Fig. 5.7. Coverage of the antenna hemisphere with 24-hour observation data with static
antenna (left) and rotating and tilting antenna (right), courtesy Wiibbena et al. (2000)

The result of the antenna calibration is stored in a file containing the horizontal
and the vertical offsets and the PCV given by elevation- and azimuth-dependent
corrections. The PCV must directly be applied to the phase pseudoranges. The
antenna PCO must also be taken into account.

5.5.4 Numerical investigation

The objective of this section is to illustrate numerically the effects of the electrical
antenna PCO and PCV.

As mentioned before, the location of the electrical antenna phase center de-
pends apart from the carrier frequency on the direction of the received signal, which
may be decomposed into azimuth and elevation. It also depends on the signal inten-
sity. Since each measurement refers to an individual antenna phase center, the mean
phase center location may be obtained by a weighted average of these individual
phase centers. Assuming a known average defining the phase center, then there is
still the need to relate this phase center to the antenna reference point (ARP) which
is geometrically defined and may be accessed by, e.g., a tape measurement. The
relation may be established by a three-dimensional vector in a local north, east, up
system where the origin lies in the ARP.

Mader (1999) illustrates the problem by measuring a very short baseline with
baseline components 7, e, u in a local system using three different solutions: single-
frequency f;, f> data and the ionosphere-free combination with frequency f3. In
Table 5.6, each of the three baseline solutions used the same 24-hour data set
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Table 5.6. Baseline components and their deviations from the respective
means without applying PCO and PCV corrections

Frequency n [m] e [m] u [m] n-— Uy e— U u— 1y
i 49712 0.0736 0.0371 0.0002 —0.0008 0.0035
b 49724 0.0694 0.0562 0.0014 -0.0050 0.0226
f3 49693 0.0802 0.0074 | —0.0017 0.0058 -0.0262
Moy s by 49710 0.0744  0.0336

and no tropospheric unknowns were estimated. Considering the arithmetic means
Uns Ue, Hy Of the three solutions for the individual baseline components, the differ-
ences of the north components amount to 1 mm and are negligible, two of the east
components deviate from the respective mean by some 5 mm, but two up compo-
nents show a difference of more than 2 cm.

In comparison with these results, PCO were determined and, after applying
them to the same measurements as used previously, the quantities in Table 5.7 re-
sult. This illustrates the success of applying calibration values to account for the
PCO.

So far the PCO only has been considered but not yet the PCV depending on
the direction of the received signal. Mader (1999) does not separate into azimuth-
and elevation-dependent influences; assuming azimuthally symmetric antennas, the
dominant phase variation arises from elevation, which may be demonstrated by
varying the elevation cutoff angle, i.e., data received below the cutoff angle are
omitted. Table 5.8 shows the impact of various cutoff angles. Note that PCO has
been applied. The changes of the north and east components are almost negligible,
but the up component of the short baseline varies by about 1 cm as the elevation cut-
off angle changes from 10 to 25 degrees. This enables to account for the information
describing the PCV as a function of elevation yielding Table 5.9. Mader (1999) in-

Table 5.7. Baseline components and their deviations from the respective
means with PCO applied

Frequency n [m] e [m] u [m] n— e — U u— [y
A 49727 0.0724 0.0022 | —0.0003 -0.0002 -0.0026
b 49714 0.0710 0.0026 | —0.0016 —0.0016 —0.0022
f3 49748 0.0745 0.0095 0.0018 0.0019 0.0047
My ey 1y 4.9730  0.0726  0.0048




154 5 Observables

Table 5.8. Baseline components of ionosphere-free solutions as func-
tions of the elevation cutoff angle with PCO applied

Cutoff [°] n[m] e [m] u [m]

10 49741 0.0741 0.0122
15 49748 0.0745 0.0095
20 49753 0.0735 0.0064
25 49763 0.0731 0.0025

Table 5.9. Baseline components of ionosphere-free solutions as func-
tions of the elevation cutoff angle with PCO and PCV applied

Cutoff [°] n [m] e [m] u [m]

10 4.9736 0.0754 —-0.0001
15 49743 0.0759 -0.0014
20 4.9745 0.0748  0.0003
25 49754 0.0745  0.0015

terprets the results as a systematic shift by about 1 mm and the “wandering” of the
up component with changing cutoff angle is now reduced to about 3 mm.

5.6 Multipath

5.6.1 General remarks

The effect is well described by its name: a satellite-emitted signal arrives at the
receiver by more than one path. Multipath is mainly caused by reflecting surfaces
near the receiver (Fig. 5.8). Secondary effects are reflections at the satellite during
signal transmission.

Referring to Fig. 5.8, the satellite signal arrives at the receiver on three different
paths, one direct and two indirect ones. As a consequence, the received signals have
relative phase offsets and the phase differences are proportional to the differences
of the path lengths. There is no general model of the multipath effect because of the
time- and location-dependent geometric situation. The influence of the multipath,
however, can be estimated by using a combination of f; and f> code and carrier
phase measurements. The principle is based on the fact that the troposphere, clock
errors, and relativistic effects influence code and carrier phases by the same amount.



5.6 Multipath 155

satellite

re
T

flecting surface

ground
N N N N N N NN N NN N NN NN NN NN

Fig. 5.8. Multipath effect

This is not true for ionospheric refraction and multipath, which are frequency de-
pendent. Taking ionosphere-free code ranges and carrier phases, and forming cor-
responding differences, all mentioned effects except for multipath are canceled.
The residuals, apart from the noise level, reflect the multipath effect. Tranquilla
and Carr (1990/91) group the multipath errors of pseudoranges into three classes:
(1) diffuse forward scattering from a widely distributed area (e.g., the signal passes
through a cluttered metallic environment), (2) specular reflection from well-defined
objects or reflective surfaces in the vicinity of the antenna, and (3) fluctuations of
very low frequency, usually associated with reflection from the surface of water.

Purely from geometry it is clear that signals received from low satellite eleva-
tions are more susceptible to multipath than signals from high elevations. Note also
that code ranges are more affected by multipath than carrier phases. Comparing
single epochs, the multipath effect may amount to 10-20 m for code pseudoranges
(Wells et al. 1987). Under certain extreme circumstances, the error resulting from
multipath may grow to about 100 m in the vicinity of buildings (Nee 1992). In
severe cases of multipath, loss of lock may even occur.

The multipath effects on carrier phases for relative positioning with short base-
lines, should, generally, not be greater than about 1 cm (good satellite geometry and
a reasonably long observation interval). But even in those cases, a simple change
of the height of the receiver may increase the multipath and, thus, deteriorate the
results. When performing static surveys where the observation times are relatively
long, intermittent periods of multipath contamination are not a problem. Such situ-
ations occur when the receiver is set up in the center of a highway and large metal
trucks continually pass by the antenna. Rapid static surveys (i.e., surveys with very
short observation times) may be more contaminated in such cases, and longer ob-
servation times would be appropriate.
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5.6.2 Mathematical model

The effect of multipath on carrier phases may be estimated by the following con-
siderations (Fig. 5.8). The direct and indirect signals interfere at the antenna phase
center and may be represented by

acos g ... direct signal,

Bacos(p+ Ap) ... indirect signal, (515D

where a and ¢ denote the amplitude and the phase of the direct signal. The am-
plitude of the indirect signal is affected by the damping factor 8 because of the
reflection at a surface (Seeber 2003: p. 317). This damping factor is in general in
the range 0 < 8 < 1 and covers the full range from no reflection (8 = 0) to full
reflection (8 = 1) with the reflected signal as strong as the direct signal. The phase
of the indirect signal is delayed by the phase shift A, which is a function of the
geometric configuration. The superposition of the signals in (5.151) is represented
by

acosp +Bacos(p+ Ap). (5.152)
Applying the cosine-theorem yields

acosy + BacosgpcosAp —BasingsinAg, (5.153)
which is slightly rearranged to

(1 + BcosAgp)acos g — (Bsin Ap) asin . (5.154)
This resultant signal may be represented (Joos 1956: p. 44) in the form

By acos (o + Apy), (5.155)
where the subscript M indicates multipath. The cosine-theorem gives

(B cos Appr) acos o — (B sin Agyr) asing. (5.156)

Comparing the coeflicients for a sin ¢ and a cos ¢ of Egs. (5.154) and (5.156) leads
to the relations

B sin Apy =BsinAg,
BucosApy =1+ pBcosAp,

(5.157)

which represent two equations for the desired quantities Sy and Agys. An explicit
expression for 5y, follows by squaring and adding the two equations. Thus,

Bum = \/1 + 82 +2Bcos Ay (5.158)
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is obtained. An explicit expression for Apys follows by dividing the two equations
in (5.157). Thus,
Bsin Ap
tan Aoy = 5.159
ansem 1 +BcosAyp ( )
is the solution.

As indicated above, the damping factor 8 may vary between 0 and 1. The sub-
stitution of 8 = 0 (i.e., there is no reflected signal and no multipath) into (5.158)
and (5.159) gives By = 1 and A¢y = 0. This means that the “resultant” signal
is identical to the direct signal. The substitution of 8 = 1 into (5.158) and (5.159)
leads to

A
By = 2(1 + cos Ag) = 2 cos 7‘” (5.160)
and
sin Ap Ag
tan Agy = ——m "% — tan =¥ 5.161
A0 P 1+ cosAgp an 2 ( )
yielding

Apy = 1 Ag. (5.162)

Examples for numerical values for 8, and Ap,s as a function of Ay are

Ap Bu Apy
0° 2 0°
90° V2  45°
180° 0  90°

which shows that the maximum effect of multipath on phase measurements occurs
for Ay = 90° = 1/4 cycle. Converting this phase shift to range gives 1/4 or, with A
= 20 cm, the maximum change in range of about 5 cm. However, it should be noted
that this value may increase if linear phase combinations are used.
The phase shift A can be expressed as a function of the extra path length As.
In the case of a horizontal reflector (ground),
1 2h .

Ay = 3 As = = sin E (5.163)
is obtained, where the phase shift is expressed in cycles. The parameter 4 denotes
the vertical distance between the antenna and the ground and FE is the elevation
of the satellite (Fig. 5.9). Multipath is periodic because E varies with time. The
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Fig. 5.9. Geometry of multipath

frequency of multipath is
d(Ap)  2h dE
=———=—cosE—.
F==a =aEg

Substituting typical values like E = 45° and dE/dt = 0.07 mrad per second leads
for a carrier with a frequency of 1.5 GHz to the approximation

(5.164)

f=0521-103h, (5.165)

where f is obtained in hertz if / is given in meters (Wei and Schwarz 1995a). Thus,
an antenna height of 2m leads to an approximate period of 16 minutes for the
multipath error.

5.6.3 Multipath reduction

To reduce or estimate the multipath effects, various methods were developed that
are classified by Ray et al. (1999) as (1) antenna-based mitigation, (2) improved
receiver technology, and (3) signal and data processing.

Among the antenna-based mitigation methods, improving the antenna gain pat-
tern by choke rings, creating special antenna designs and arrays are very effective
(Moelker 1997, Bartone and Graas 1998). The elimination of multipath signals
is possible by selecting an antenna that takes advantage of the signal polariza-
tion. If the transmitted GNSS signals are right-handed circularly polarized, then
the reflected signals are left-handed polarized. A reduction of the multipath ef-
fect may also be achieved by digital filtering, wideband antennas, antenna ground
planes absorbing radio frequencies, choke ring antennas including the advanced
dual-frequency choke ring design (Philippov et al. 1999). A refined version of the
choke ring idea uses spiral arms. The advantage of the more recent developments
over the choke rings is the sharper radiation pattern roll-off (which reduces the mul-
tipath susceptibility), no phase center offset between two carriers, no necessity for
any alignment, e.g., to the north direction, due to its symmetry, and its planar struc-
ture (Kunysz 2000). The absorbent antenna ground plane reduces the interference
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of satellite signals with low or even negative elevation angles which occur in case
of multipath.

Improving the receiver technology for multipath reduction includes narrow cor-
relation spacing, extending the multipath estimation delay lock loop, enhancing the
strobe correlator multipath rejection; more details are given in Dierendonck and
Braasch (1997), Garin and Rousseau (1997). Examples for the ongoing research
for multipath reduction are approaches as the multipath estimating delay lock loop
(MEDLL) (Townsend et al. 1995, 2000). This technique separates the incoming sig-
nal into the direct line-of-sight component and the indirect signal by using an array
of correlators and measuring the received correlation function. Tests with MEDLL
have shown an error reduction up to 90% (Fenton and Townsend 1994).

Numerous methods investigate multipath mitigation by signal and data pro-
cessing: exploring the signal-to-noise ratio, smoothing carrier phases, or using data
combinations.

The detection and reduction of multipath in the spectral domain is proposed by
Li et al. (1993). The measured data are transformed by the Fourier transformation
into the spectral domain. The detection and reduction of multipath is carried out by
amplitude filtering. The inverse Fourier transformation outputs the filtered data.

As another example, Phelts and Enge (2000) locate the multipath invariant
points using one or more additional correlator pairs and by the tracking error com-
pensator which corrects for the code tracking error caused by code multipath and
thermal noise.

The relation (5.159) expressing the carrier phase error due to multipath is in-
vestigated by Ray et al. (1999) to mitigate multipath effects using multiple closely
spaced antennas for static applications. The nearby placed antennas cause a strong
correlation of the reflected signals. The phase of the reflected signal at each antenna
phase center depends on the signal direction which may be expressed by azimuth
and elevation. Also the geometry of the antennas must be taken into account. Ray
et al. (1999) introduce a reference antenna and five antennas assembled around it.
For each satellite, a Kalman filter is implemented. The four-element state vector
of the estimator comprises the damping factor 3, the reflected signal phase at the
antenna, and azimuth and elevation of the reflected signal. By individually com-
bining the data of the reference antenna with the others, profiting from the known
geometry of the antennas and using a single external stable clock to get a negligible
receiver clock bias, the model for the measurements may strongly be simplified so
that it mainly reflects the oscillatory multipath error and the random carrier phase
noise. The results of the Kalman filter estimation may be adapted to finally apply
to (5.159) allowing for the multipath error determination in the carrier phase at
each antenna. Neglecting the filter convergence period, test measurements show an
improvement of about 70%.

The most effective countermeasure to multipath is to avoid sites where it could
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be a problem (e.g., near chain-link fence). Considering Fig. 5.8, placing the an-
tenna directly on the reflecting ground without a tripod would eliminate one of the
two indirect paths; however, a vertical reflecting surface would still contaminate
the results. The general recommendation is, therefore, to avoid, as far as possible,
reflecting surfaces in the neighborhood of the receivers.

Nowadays, multipath analysis and mitigation is no longer restricted to high-
precision (static) applications. Car navigation is one example using multiple an-
tennas to isolate and detect multipath on code measurements (Nayak et al. 2000).
Multipath on code measurements remains the most significant error source for dif-
ferential GNSS vehicle navigation. Compared to static applications, the positions of
various reflectors are changing rapidly, increasing the difficulty of a proper model.
For the multipath affecting code measurements, the residuals of code and phase
may be analyzed since the carrier receiver noise and the multipath affecting phases
are very small compared to the corresponding code values. Successful identifica-
tion and elimination of the multipath-corrupted measurement is the final objective
being demonstrated in some experiments by Nayak et al. (2000). The gain in posi-
tion accuracy improvement depends on the size of the multipath errors. Even with
high-performance correlator receivers, multipath errors of several meters frequently
occur.



6 Mathematical models for
positioning

6.1 Point positioning

6.1.1 Point positioning with code ranges

Code range model
The code pseudorange at an epoch ¢ can be modeled, cf. Eq. (5.2), by

RI(1) = 03(D) + c AS%(1) . 6.1)

Here, R}(¢) is the measured code pseudorange between the observing receiver site
r and the satellite s, the term o3 (¢) is the geometric distance between the observing
point and the satellite, and c is the speed of light. The last item to be explained is
AS:(t). This clock bias represents the combined clock offsets of the receiver and the
satellite clock with respect to system time, cf. Eq. (5.1).

Examining Eq. (6.1), the desired coordinates of the receiver site to be deter-
mined are implicit in the distance o}(f), which can explicitly be written as

ol(1) = N0 = X2 + (Y () = Y, 2 + (Z°() - 2,2, (6.2)

where X°(t), Y*(¢), Z*(¢) are the components of the geocentric position vector of
the satellite at epoch ¢, and X,, Y,, Z, are the three ECEF coordinates of the (sta-
tionary) observing receiver site. Now, the clock bias Ad;(f) must be investigated in
more detail. For the moment consider a single epoch; a single position r is auto-
matically implied. Each satellite contributes one unknown clock bias which can be
recognized from the superscript s at the clock term. Neglecting, for the present, the
site r clock bias, the pseudorange equation for the first satellite would have four
unknowns. These are the three site coordinates and one clock bias of this satellite.
Each additional satellite adds one equation with the same site coordinates but with
a new satellite clock bias. Thus, there would always be more unknowns than mea-
surements. Even when an additional epoch is considered, new satellite clock biases
must be modeled due to clock drift. Fortunately, the satellite clock information is
known with sufficient accuracy and transmitted via the broadcast navigation mes-
sage, e.g., in the form of three polynomial coefficients ag, a;, a, with a reference
time f., cf. Eq. (3.56). Therefore, the equation

5 = ap + a1t — 1) + ar(t — t.)* (6.3)
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enables the calculation of the satellite clock bias at epoch . It should be noted that
the polynomial (6.3) removes a great deal of the satellite clock uncertainty, but a
small amount of (random) error remains. It should also be noted that the relativistic
effects are not included in the polynomial. Therefore, for a more complete user
algorithm for satellite clock correction, the term (5.144) must also be taken into
account by

() = ap + a1t —t.) + ax(t — 1.)* + 6™, (6.4)

cf. ARINC Engineering Services (2006a).
The combined bias term Ad;(#) is split into two parts by

AS (1) = 6,(1) — 6°(1), (6.5)

where the satellite-related part §°(f) is known and the receiver-related term 6,(¢)
remains unknown. Substituting (6.5) into (6.1) and shifting the satellite clock bias
to the left side of the equation yields

R(1) + c6°(t) = 0)(1) + ¢ 6,(¢) . (6.6)

Note that the left side of the equation contains observed or known quantities, while
the terms on the right side are unknown.

Basic configurations
Basic configurations are defined by the condition that the number of observations
must be equal to or greater than the number of unknowns. This condition is suffi-
cient but does not necessarily give a solution. The reason for this is that inherent
rank deficiencies may prevent a numerical solution because of a singularity. More
explanations are given later when the rank deficiency becomes an issue.

The number of observations is n, n;, where n; denotes the number of satellites
and n; the number of epochs.

For static point positioning, the three coordinates of the observing site and the
receiver clock bias for each observation epoch are unknown. Thus, the number of
unknowns is 3 + n;. The basic configuration is defined by

ngng > 3+ ny, (6.7)

which yields the explicit relation

3
ny > .
ng—1

(6.8)

The minimum number of satellites to get a solution is ny; = 2, leading to n, > 3
observation epochs. For n; = 4, the solution n, > 1 is obtained. This solution
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reflects the instantaneous positioning capability of GNSS, where the four unknowns
at any epoch are solved if at least four satellites are tracked.

For kinematic point positioning, the basic configuration can be directly derived
from the following consideration. Due to the motion of the receiver, the number of
the unknown station coordinates is 3n,. Adding the n, unknown receiver clock bi-
ases, the total number of unknowns is 4n,. Hence, the basic configuration is defined
by Eq. (6.7),

ngn; > 4n; (6.9)

yielding ngy > 4. In other words, the position (and system time) of a moving re-
ceiver can be determined at any instant as long as at least four satellites are tracked.
Geometrically, the solution is represented by the intersection of four pseudoranges.
For the rigorous analytical solution see Kleusberg (1994) or Lichtenegger (1995).

The basic configurations must be considered from a theoretical point of view.
The solution ny = 2, n; > 3 for static point positioning, for example, means that
simultaneous observations of two satellites over three epochs would theoretically
suffice. In practice, however, this situation would yield unacceptable results or the
computation would fail because of an ill-conditioned system of observation equa-
tions unless the epochs were widely spaced (e.g., hours). A solution is also possible
if observations of three epochs for two satellites are made, followed by three addi-
tional epochs (e.g., seconds apart) for two other satellites. Such an application will
be rare but is imaginable under special circumstances (e.g., in urban areas).

6.1.2 Point positioning with carrier phases

Phase range models
Pseudoranges can also be obtained from carrier phase measurements. The mathe-

matical model for these measurements, cf. Eq. (5.9), is given by

1
D}1) = = 0}(0) + N} + = (), (6.10)

N

where @;(¢) is the measured carrier phase expressed in cycles, 4* is the wavelength,
and ©;(¢) is the same as for the code range model. The time-independent phase
ambiguity N; is an integer number and, therefore, often called integer ambiguity
or integer unknown or simply ambiguity. The term ¢ denotes the speed of light and
Ad:(t) is the combined receiver and satellite clock bias.

Inserting Eq. (6.5) into Eq. (6.10) and shifting the (known) satellite clock bias
to the left side of the equation yields

DD + 0 6°(1) = %Qi(l) + NS+ f56,(0), 6.11)

where the frequency of the satellite carrier f* = ¢/A° has been substituted.
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Basic configurations

Using the same notations as before, the number of observations is again ng n,. The
number of unknowns, however, is increased by the number n; because of the ambi-
guities.

For static point positioning, the number of unknowns is composed of 3 coordi-
nates of the observing station, ny unknown ambiguities, and n, unknown receiver
clock biases. Referring to (6.11), the problem of rank deficiency is encountered.
Mathematically less interested readers may skip the next paragraph.

A few basics on rank and rank deficiency are given here. Deeper insight may be
obtained from Koch (1987: Sects. 132, 333). Assume a large number of equations
of type (6.11) being prepared to be solved for the unknowns. This implies a matrix-
vector representation where the right side is composed of a product of a design
matrix A and a vector comprising the unknowns in linear form. The rank of the de-
sign matrix is equal to the order of the largest nonsingular matrix that can be formed
inside A. Formulated differently: the maximum number of the linearly independent
rows of matrix A is called the rank of the matrix and is denoted by rank A. Linear
dependence of two rows means that their linear combination yields zero. The word
“rows” in this definition may also be replaced by the word “columns”. For a simpler
discussion, assume a quadratic matrix with m X m rows and columns. Thus, if the
largest nonsingular matrix is the matrix A itself, the rank equals rank A = m and the
matrix is regular, i.e., it may be inverted without troubles. On the other hand, if the
largest nonsingular matrix inside A is a matrix with, e.g., (m —2) X (m—2) rows and
columns, the rank would be m —2 and implies a rank deficiency of m—rank A which
turns out to be m — (m — 2) which amounts to 2. As a consequence, the singular sys-
tem becomes regularly solvable if two unknowns (also denoted as parameters) are
arbitrarily chosen. This equals the “fixing” of two parameters. Figuratively speak-
ing, two of the parameters may be transferred to the left side of the matrix-vector
system comprising the measurements. This transfer reduces on the other hand the
columns of the matrix on the right side by the amount of the rank deficiency, i.e.,
by two in the example discussed. This concludes the short discussion on rank and
rank deficiency.

The model in the form (6.11) comprises a rank deficiency of 1, this means that
one of the unknown parameters may (and must) be arbitrarily chosen. Suppose that
a receiver clock bias at one epoch is chosen, then, instead of n, unknown receiver
clock biases, only n, — 1 clock biases remain. Therefore, the basic configuration for
static point positioning without rank deficiency is defined by the relation

ngng >3 +ng+(m—1), (6.12)

which yields explicitly the required number of epochs as

ng +2

(6.13)

ng = .
ng—1
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The minimum number of satellites to get a solution is ny; = 2 leading to n, > 4
observation epochs. Another integer solution pair is ny = 4, n, > 2.

For kinematic point positioning with phases, 3n; unknown station coordinates
must be considered because of the roving receiver compared to the 3 unknowns
in (6.12). The other considerations including the discussion on the rank deficiency
remain unchanged. Therefore, the basic configuration is defined by

ngng > 3n; +ng+ (ny — 1) (6.14)

yielding the explicit relation

ng—1
ny > d .
ng—4

(6.15)

The minimum number of satellites to get a solution is ny; = 5 which have to be
tracked for n, > 4 epochs. Another integer solution pair is ny = 7, n, > 2.

Note that solutions for a single epoch (i.e., n; = 1) do not exist for point po-
sitioning with carrier phases. As a consequence, kinematic point positioning with
phases is only possible if the n; phase ambiguities are known from some initializa-
tion. In this case, the phase range model converts to the code range model.

6.1.3 Point positioning with Doppler data
The mathematical model for Doppler data, cf. Eq. (5.11), is

Di(t) = 0}(1) + ¢ AS(0) (6.16)

and may be considered as time derivative of a code or phase pseudorange. In this
equation, D;(#) denotes the observed Doppler shift scaled to range rate, 0;(¢) is the
instantaneous radial velocity between the satellite and the receiver, and A('Sﬁ(t) is the
time derivative of the combined clock bias term.

The radial velocity for a stationary receiver, cf. Eq. (3.34),

5(F) —
ol(t) = e'(t) — o,

— N7 Sr as 6.17
TR IR (©.17)

relates the unknown position vector @, of the receiver to the instantaneous position
vector @°(7) and velocity vector 0°(¢) of the satellite. These vectors can be calculated
from the satellite ephemerides. Introducing on the one hand o = ||@*(¢) -, || accord-
ing to (3.33) and on the other hand the components X*(¢), Y*(¢), Z*(¢) of the vector
0%(1), likewise X,, Y,, Z, as the components of the vector @,, and X*(¢), Y*(¢), Z5(z)
for the vector @°(¢) accordingly, the radial velocity may also be written as

Yi(t)-Y,

©

@m:ﬁgl&fm+ Wm+£@;éfm (6.18)
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after evaluating the inner product.
The contribution of the satellite clock to A§S(z) is given by, cf. Eq. (6.3),

O(t) = ay + 2ax(t — t,) (6.19)

and is known. Summarizing, the observation equation (6.16) contains four un-
knowns. These unknowns are the three coordinates of @, and the receiver clock
drift §,(¢). Hence, compared to the code range model, the Doppler equation con-
tains the receiver clock drift instead of the receiver clock offset.

The concept of combined code pseudorange and Doppler data processing leads
to a total of five unknowns. These unknowns are the three point coordinates, the
receiver clock offset, and the receiver clock drift. Each satellite contributes two
equations, one code pseudorange and one Doppler equation. Therefore, three satel-
lites are sufficient to solve for the five unknowns.

The similarity of the pseudorange and the Doppler equation gives rise to the
question of a linear dependence of the equations. However, it can be shown that
the surfaces of constant pseudoranges and the surfaces of constant Doppler are
orthogonal and hence independent (Levanon 1999).

6.1.4 Precise point positioning

Basic model

Considering the methods of point positioning described in the previous sections, the
main limiting factors with respect to the achievable accuracy are the orbit errors, the
clock errors, and the atmospheric influences (ionospheric and tropospheric refrac-
tion). Therefore, following Witchayangkoon (2000: p. 2), precise point positioning
(PPP) uses accurate orbital data and accurate satellite clock data (as provided, e.g.,
by the IGS), and dual-frequency code pseudoranges and/or carrier phase observa-
tions by definition. The preferred model is based on an ionosphere-free combina-
tion of code pseudoranges and carrier phases as well.

The respective equation for the code pseudoranges is obtained from (5.83) and
reads

f 22 f 12 Tro
Rl——sz ﬁ:Q'FCAé-FA p, (620)
1 -5
where a term to model the tropospheric delay has been added.
The ionosphere-free carrier phase relation as given in (5.80) reads
2 2
2 /; ) f;
[@1—Lq>2] = ﬂg+f1A5+ NI—LNZ] .
fl fl - fz ¢ fl fl )

6.21)
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This equation is now multiplied by the factor ¢/ f] yielding

f2 ] ch P ch
O — =0, =0+ cAS + N — =N, (622)
[ o R-5 hlR-5
or, by substituting ¢ = A fi and adding the tropospheric delay,
A f} A1 f}
[(Dl—é(l)z] 21f12=Q+cA6+ATr°p+ N1—éN2} 21f12 (6.23)
o =1 =5

is obtained. This formula yields after a slight rearrangement and by using ¢ = Ay f>

ADLfT Dafy ANLfE AaNofy
-7 -7 R=-5 -5

In summary, (6.20) and (6.24) are the desired ionosphere-free combinations of
code pseudoranges and carrier phases for PPP:

Rif} ~ Rof5
=5 1~-5

2 2 2 2
4D f; ~ Dy f; ot cAS 1 AT 4 AN f; ~ N> f5

-2 - p2 - -5

where (6.20) has been slightly rearranged. The unknown parameters to be deter-
mined are the point position contained in o, the receiver clock error contained in
AS (see Eq. (5.1)), the tropospheric delay ATP, and the ambiguities. Based on this
model, PPP may be applied either in static or in kinematic mode.

To solve for the mentioned unknowns, several methods are possible. Deo et
al. (2003) apply a sequential least-squares adjustment, (extended) Kalman filtering
is another frequently used method.

Apart from the PPP model given in (6.25), different strategies may be found in
the literature, e.g., with respect to the tropospheric term. Witchayangkoon (2000)
and Kouba and Héroux (2001) estimate the total tropospheric zenith path delay as
above, whereas Gao and Shen (2001) model the dry tropospheric zenith path delay
and estimate the wet component as a parameter.

=0+ cAS + ATP 4

(6.24)

=0+ cAS+ AToP,
(6.25)

Model refinements

To exploit the full potential of PPP, a refinement of the model must be performed.
Additional terms are necessary to account for the Sagnac effect, the solid earth
tides, the ocean loading, the atmospheric loading (caused by the atmospheric pres-
sure variation), polar motion, earth orientation effects, crustal motion and other
earth deformation effects (Kouba and Héroux 2001).
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Also the antenna phase center offset (at the satellite and at the receiver) and
antenna phase wind-up error (Witchayangkoon 2000: pp. 24-26) should be taken
into account.

The proper weighting of the observations is also a key to improve the accu-
racy. Numerous investigations on different weighting schemes exist. Among them,
Witchayangkoon (2000: Sect. 7.3.3.4) mentions exponential weighting schemes
taking into account that observations from satellites near the horizon get a lower
weight (Euler and Goad 1991); using weights reflecting the signal-to-noise (S/N)
ratio values (Collins and Langley 1999, Hartinger and Brunner 1999); Langley
(1997) derives carrier-to-noise power density (C/Np) ratios varying with the ele-
vations of the arriving signal; weighting as a cosecant or square of a cosecant func-
tion of the satellite elevation angle E (Vermeer 1997, Collins and Langley 1999,
Hartinger and Brunner 1999) which is justified by the cosecant shape of the various
models of the tropospheric mapping function. Wieser (2007a, b) compares identi-
cal variances o for all observations, elevation-dependent variances 0'%/ $in’E , and
SIGMA-¢ variances defined by & - 10~(€/No)/10 where the model parameters o, o,
and the factor k£ depend on the receiver and antenna types and can be determined in
advance. As outlined in Wieser et al. (2005), the measured C/Nj is a quality indi-
cator because there is a functional relation between this quantity and the tracking
loop noise.

Numerical results

Gao and Chen (2004) use real-time precise orbit and clock corrections (accurate
to 20cm and 0.5 ns, respectively) provided by JPL and present results for differ-
ent positioning modes. For a static observation, they demonstrate that all position
components (latitude, longitude, height) “converge to centimeter level” after 20
minutes. The problem of the convergence arises from the ambiguities. After this
convergence has been achieved, the results remain even below the subcentimeter
level. Therefore, they conclude that PPP is capable to provide real-time centimeter-
level accuracy for static surveys.

An additional remark on the ambiguities is appropriate here: because of un-
known receiver and also transmitter-specific phase delays which in addition vary
with time, the ambiguities are not integers (Zumberge et al. 1997); only the double-
difference ambiguities are integers. Note, however, that for “applications that do not
require accuracies better than a few millimeters in the horizontal dimension and ap-
proximately 1 cm in the vertical dimension, ambiguity resolution is not necessary,
provided that the observation time is of the order of 1 day” (Zumberge et al. 1997).

For kinematic applications, also real-time centimeter-level accuracy is demon-
strated for a car and an airplane by Gao and Chen (2004), again based on the JPL
orbit and clock corrections.

Note, however, these excellent results mainly profit from the JPL input data for
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the satellite orbit and, even more important, the satellite clock correction. These JPL
data are available for commercial applications (Gao and Chen 2004). When relying
on freely available products like the predicted ultrarapid orbit product as provided
by the IGS, with an even better (compared to the JPL product) orbit accuracy of
10 cm but a significantly worse accuracy of 5 ns for the clock (Gao and Chen 2004),
then this accuracy is insufficient for real-time decimeter-level PPP (Deo et al. 2003).
Kinematic results based on the use of IGS final orbit and clock corrections are given
in Abdel-salam (2005). The position accuracy is better than 3 decimeters for many
cases including land vehicle, marine, and airborne applications.

Witchayangkoon (2000) gives a detailed model and incorporates corrections
for solid earth tides, relativity, and satellite antenna phase center offsets and re-
ports some results from numerical examples. In cases of low impact by multi-
path, “single-frequency ionosphere-free PPP solutions are equivalent to the dual-
frequency solutions”.

Thus, a future trend is PPP using single-frequency data only. Even with a simple
model as proposed by Satirapod and Kriengkraiwasin (2006), which uses single-
frequency ionospherically corrected code and phase observations corrected, intro-
duces the Saastamoinen troposphere model to calculate the total tropospheric zenith
delay which is mapped to the line-of-sight delay, a horizontal accuracy of 1-4 m can
be achieved with data sessions ranging from 5-30 minutes (but being based on the
precise orbit files of the IGS).

6.2 Differential positioning

6.2.1 Basic concept

Differential positioning with GNSS, abbreviated by DGNSS, is a real-time posi-
tioning technique where two or more receivers are used. One receiver, usually at
rest, is located at the reference or base station with (assumed) known coordinates
and the remote receivers are fixed or roving and their coordinates are to be deter-
mined (Fig. 6.1). The reference station commonly calculates pseudorange correc-
tions (PRC) and range rate corrections (RRC) which are transmitted to the remote
receiver in real time. The remote receiver applies the corrections to the measured
pseudoranges and performs point positioning with the corrected pseudoranges. The
use of the corrected pseudoranges improves the position accuracy with respect to
the base station.
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Fig. 6.1. Basic concept of differential positioning

6.2.2 DGNSS with code ranges

Generalizing (6.6) and following Lichtenegger (1998), the code range at base sta-
tion A to satellite s measured at epoch 7y may be modeled by

R} (t0) = ) (t0) + Aoy (10) + A0’ (fo) + Aga(to) , (6.26)

where 0} (fo) is the geometric range, the term Agj} (7)) denotes range biases de-
pending on the terrestrial base position and satellite position as well (e.g., radial
orbital error, refraction effects), the range bias Ag*(#y) is purely satellite-dependent
(e.g., effect of satellite clock error), and the range bias Ag4(fg) is purely receiver-
dependent (e.g., effect of receiver clock error, multipath). Note that noise has been
neglected in (6.26).

The pseudorange correction for satellite s at reference epoch # is defined by
the relation

PRC’(to) = 05 (t0) — R, (t0)

= —Ap; (to) — Ao*(19) — Aga(to)

and can be calculated since the geometric range o), (o) is obtained from the known
position of the reference station and the broadcast ephemerides and R (o) is the
measured quantity. In addition to the pseudorange correction PRC*(¢y), the time
derivative or range rate correction RRC*(#y) is determined at the base station.

Range and range rate corrections referring to the reference epoch #, are trans-
mitted to the rover site B in real time. At B the pseudorange corrections are pre-
dicted for the observation epoch ¢ using the relation

(6.27)

PRC?(f) = PRC*(#9) + RRC* (1) (¢ — o) , (6.28)

where t — 1y is defined as latency. The achievable accuracy increases for smaller
variations of the pseudorange corrections and for smaller latencies.
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Adapting (6.26) to the rover site B and epoch ¢, the code pseudorange measured
at the rover can be modeled by

Ry(1) = 0p(1) + Aop(t) + A0* (1) + Aop(t) . (6.29)

Applying the predicted pseudorange correction PRC*(z), cf. Eq. (6.28), to the mea-
sured pseudorange Ry (1) yields

Ry(Deorr = R3(1) + PRCY(1) (6.30)

or, after substitution of (6.29) and the pseudorange correction according to (6.27)
and (6.28), respectively,

Ry(Dcorr = 0p(1) + [Aog(1) — Ay (D] + [Aop(1) — Aoa(D], (6.31)

where the satellite-dependent bias has canceled out. For moderate distances be-
tween the base and the rover site, the satellite-receiver-specific biases are highly
correlated. Therefore, the influence of radial orbital errors and of refraction is sig-
nificantly reduced. Neglecting these biases, Eq. (6.31) simplifies to

Ry(Dcorr = 0p(1) + Aoas(0) (6.32)

where Apap(f) = Aop(f) — Aoa(?). If multipath is neglected, this term converts
to the combined receiver clock bias scaled to range, i.e., Aoap(t) = cdap(t) =
cop(t) — coa(®). If no latency exists, the equation is identical with the between-
receiver single-difference of code ranges measured at A and B, and differential po-
sitioning converts to relative positioning (Sect. 6.3).

Positioning at the rover site B is performed with the corrected code pseudo-
ranges Ry(f)corr leading to improved position accuracies. The basic configuration
for DGNSS with code ranges is identical with that for kinematic point positioning
with code ranges, cf. Eq. (6.9).

6.2.3 DGNSS with phase ranges

Generalizing (6.10) and following Lichtenegger (1998), the phase pseudorange
measured at the base station A at epoch #y can be modeled by

A @ (10) = 03 (t0) + Aoy (t0) + Ao’ (1) + Aoalto) + ANy, (6.33)

where, in analogy to the code range model, 0}, (o) is the geometric range, Ao (7o) is
the satellite—receiver-dependent bias, Ao*(¢y) is purely satellite-dependent, Aoa(y)
is purely receiver-dependent. Finally, N} is the phase ambiguity. Consequently, the
phase range correction at reference epoch tj is given by

PRC*(19) = 0} (10) — A* @} (10) ,

= —Ag} (1) = Ao (t0) — Aga(to) = A°Nj .

(6.34)
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The formulation of range rate corrections at the base station A as well as the appli-
cation of predicted range corrections to the observed phase ranges at the rover site
B is carried out in full analogy to the previously described code range procedure.
Therefore,

X O (1)eorr = Q1) + Aoan(D) + 1N (635)

results for the corrected phase ranges, where Apap(r) = Aop(t) — Aoa(t) and N, =
Ny, — Ny is the (single-) difference of the phase ambiguities. As in the code range
model, if multipath is neglected, the term Ap4p(#) converts to the combined receiver
clock bias scaled to range, i.e., Aoap(t) = ¢ 5ap(t) = c Op(t) — c S4(2).

Point positioning at the rover site B is performed with the corrected phase
pseudoranges A° @y (#)corr- The basic configuration for DGNSS with phase ranges is
identical with that for kinematic point positioning with phase ranges, cf. Eq. (6.15).

DGNSS with phase ranges, sometimes denoted as carrier phase differential
technique, is used for most precise kinematic applications. For this mode of op-
eration, on-the-fly (OTF) techniques are required to resolve the ambiguities. More
details on OTF are given in Sect. 7.2.3.

Note that DGNSS with phases converts to relative positioning with phases if the
latency becomes zero. This method is usually denoted real-time kinematic (RTK)
technique.

6.2.4 Local-area DGNSS

An extension of DGNSS is the local-area DGNSS (LADGNSS) which uses a net-
work of GNSS reference stations. As the name implies, LADGNSS covers a larger
territory than can be reasonably accommodated by a single reference station. One
of the main advantages of LADGNSS is that a more consistent accuracy can be
achieved throughout the region supported by the network. In the case of DGNSS
with a single reference station, the accuracy decreases as a function of distance
from the reference station at a rate of approximately 1 cm per 1km. Other advan-
tages of LADGNSS are that inaccessible regions can be covered, e.g., large bodies
of water, and that in case of a failure in one of the reference stations, the network
will still maintain a relatively high level of integrity and reliability compared to a
collection of individual DGNSS reference stations.

Apart from the monitor stations, the LADGNSS network includes (at least) one
master station. This station collects the range corrections from the monitor stations,
processes these data to form LADGNSS corrections which are transmitted to the
user community as well as to the monitor stations (Mueller 1994). The networks
may cause slight additional delay beyond regular DGNSS due to the additional
communication required between the monitor stations and the master station.
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Since the reference stations of the LADGNSS network may be very distant
from the user location, the virtual reference station (VRS) concept (Sect. 6.3.7) has
been developed (Wanninger 1999). Here, the user gets range corrections or even
the observables of a nonexistent (i.e., virtual) reference station at a user-specified
position. This concept is a prerequisite mainly for RTK applications which require
short distances to reference stations to facilitate ambiguity resolution.

6.3 Relative positioning

6.3.1 Basic concept

The objective of relative positioning is to determine the coordinates of an unknown
point with respect to a known point which, for most applications, is stationary. In
other words, relative positioning aims at the determination of the vector between the
two points, which is often called the baseline vector or simply baseline (Fig. 6.2).
Let A denote the (known) reference point, B the unknown point, and b p the base-
line vector. Introducing the corresponding position vectors X4, Xp, the relation

Xp = X4 +bap (6.36)

may be formulated, and the components of the baseline vector b g are

Xp—Xa AXap
bup=| Yo—Ys |=| AYaz |. (6.37)
Zp—Z, AZpp

The coordinates of the reference point must be given and can be approximated by
a code range solution. More often the coordinates are precisely known based upon
GNSS or other methods.

2 l satellites
7
9
bas
A baseline B

Fig. 6.2. Basic concept of relative positioning
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Relative positioning can be performed with code ranges, cf. Eq. (6.6), or with
phase ranges, cf. Eq. (6.11). Subsequently, only phase ranges are explicitly consid-
ered because solutions based on phase ranges are far more accurate. Relative posi-
tioning requires simultaneous observations at both the reference and the unknown
point. This means that the observation time tags for the two points must be the same.
Assuming such simultaneous observations at the two points A and B to satellites j
and k, linear combinations can be formed leading to single-differences, double-
differences, and triple-differences. Differencing can basically be accomplished in
three different ways: across receivers, across satellites, across time (Logsdon 1992:
p- 96). Instead of “across” frequently “between” is used. In order to avoid overbur-
dened expressions, shorthand notations will be used throughout the textbook with
the following meanings: single-difference corresponds to across-receiver difference
(or between-receiver difference), double-difference corresponds to across-receiver
and across-satellite difference, and triple-difference corresponds to across-receiver
and across-satellite and across-time difference. Most postprocessing software uses
these three difference techniques, so their basic mathematical modeling is shown in
the following sections.

6.3.2 Phase differences

Single-differences

Two receivers and one satellite are involved. Denoting the receiver sites by A and
B and the satellite by j and using Eq. (6.11), the phase equations for the two points
are

. o 1 . . .
QL0+ f16(1) = gy oW + Ny + f764(0),

‘ 1 ' (6.38)
QL) + f167(1) = ¥ 03 + N + f 5p(1)

and the difference of the two equations is

D40 = D) = 5 [0} = Q4] + Ny =N + 1/ [85(0) = 4] . (6.39)

Equation (6.39) is referred to as single-difference equation. This equation stresses
one aspect of the solution for the unknowns on the right side. A system of such
equations would lead to a rank deficiency even in the case of an arbitrarily large
redundancy. This means that the design matrix of the adjustment has linearly de-
pendent columns and a rank deficiency exists. Therefore, the relative quantities

J AU J
NAB _NB_NA’

04B(1) = 6p(1) = 64 (1)

(6.40)
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are introduced. Using additionally the shorthand notations

@) 5 (1) = DY(H) — DL (D),

. . ) (6.41)
Ohp() = 0p(1) — 0} (D)
and substituting (6.40) and (6.41) into (6.39) gives
. 1 . .
(1) = i 04D + Nip + f/6ap(0), (6.42)

which is the final form of the single-difference equation. Note that the satellite clock
bias has canceled, compared to the phase equation (6.11).

Double-differences

Assuming the two points A, B, and the two satellites j, k, two single-differences
according to Eq. (6.42) may be formed:

‘ 1 . . ,
®1]43(t) = EQIQB(I) + N/‘iB + f] 04B(1),
(6.43)
k 1 k k k
CDAB(I) = ﬁ QAB(I) + Nyp+ S oaB(D).

To obtain a double-difference, these single-differences are subtracted. Two cases
must be considered.

Case 1
Assuming equal frequencies f = f/ = f¥ for the satellite signals, the result is

. 1 . .
DK (1) - D (1) = ; |4t — )50 + Nby = N4 (6.44)

Using shorthand notations for the satellites j and k analogously to (6.41), the final
form of the double-difference equation is

. 1 . .
() = ; ol + N, (6.45)

where 1 = 2/ = A*. The elimination of the receiver clock biases is the main reason
why double-differences are preferably used. This cancellation resulted from the
assumptions of simultaneous observations and equal frequencies of the satellite
signals.

Symbolically, the convention

sy = g — (6.46)
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has been introduced, where the asterisk may be replaced by @, o, or N. Note that
these terms comprising two subscripts and two superscripts are actually composed
of four terms. The symbolic notation

X;} ’;; - *é - >x< + >x< (6.47)

characterizes, in detail, the terms in the double-difference equation:
(1) = DE(1) — DL(1) — O (1) + (1),

Qh(®) =0k —op(t) — k() +24 0, (6.48)

jk o _ Ak J k J

Ny =Ny —-Ng —-N; +N,.

Case 2

Now different frequencies f/ # f* are considered. Referring to Eq. (6.38), the
model equations for carrier phases measured at the two sites A and B to the satellite
J are now given by

; - 1 S
D)+ 1) = Egi*(t) + Ny + f64(0),

| (6.49)
C(1) + 1 67(0) = 75 05(0) + Ny + 7 65(0).
The measured phases are scaled to ranges by
D) = V() (6.50)

where ®/(¢) is output by the receiver. The single-difference of the two equations
(6.49) leads to

(1) — B (1) = 0(1) — @) (1) + MV [N}, = NJ1 + ¢ [6p(1) — 54(D]  (6.51)

with ¢ = A/ f/ being the speed of hght Introducing the shorthand notations of
(6.40) and (6.41), i.e., symbolically = — *é—* > @ more compact form is achieved
by

(1) = 0, (0 + VN, + cOan(D) . (6.52)

Assuming two satellites j, k gives rise to two single-differences (6.52). From these
the double-difference

B (1) — @ 4(10) = & (1) — 0l 5 (1) + A NA — AV N, (6.53)
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k

is obtained. Introducing again shorthand notations, symbolically */JZ‘B = #yp— *Z‘ B

there results
(1) = o) + X NEL — VN (6.54)
which may be rearranged by “adding zero” in the form of —A* N i I'S: AN j" p S0 that
(1) = o) + AN + NIk - ) (6.55)

is finally obtained. This equation differs from the double-difference equation (6.45)
by the “single-difference bias” bsp = Nj‘ B(/l" — AY). The unknown single-difference
N /i  can be estimated from single-point positioning with an accuracy of about 10 m
corresponding to 50 cycles (for a typical wavelength of some 20 cm). If the wave-
length difference for two carriers corresponds to 0.000 351 cycles (which is typical
for GLONASS carriers being separated by one carrier number, cf. Eq. (10.2)), then
the result bgp = 0.02 cycles is obtained. This shows that for small frequency differ-
ences bgp acts as a nuisance parameter. For larger differences, iterative processing
has been proposed. In the first step, only satellites with small wavelength differ-
ences are considered. Hence, the double-differenced ambiguities of these satellites
can be resolved and an improved position is obtained leading to a more accurate
estimation for Ni - The procedure is then continued and stepwise extended to all
satellites until all ambiguities have been resolved. More details on this subject can
be found in Habrich et al. (1999), Han et al. (1999).

Triple-differences

So far only one epoch f has been considered. To eliminate the time-independent am-
biguities, Remondi (1984) has suggested differencing double-differences between
two epochs. Subsequently, only the case f/ = f* is considered explicitly. Denoting
the two epochs in (6.45) by ¢ and t,, then

1 ik
B(tl)_ QAB(II)—'—NI{AB’

(6.56)
() = ~ QAB(f2)+N,J4];;
are the two double-differences, and
Jk Jk 1
®p(12) = ®p(1) = ~ [Qhiy(12) ~ @4p(1)] (6.57)

is the triple-difference, which may be written in the simplified form

1
B(tlz) QAB(tlz) (6.58)
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if the symbolic formula

#(f12) = *(12) — *(11) (6.59)
is applied to the terms @ and p. It should be noted that both CI)ikB(tlz) and Qi\kB(nz)
are actually composed of eight terms each. Resubstituting (6.57) and either (6.47)
or (6.48) yields

(sz}(flz) =+ Dh(nr) - q)é(tz) - @k (1) + CDi‘(tQ)

, ‘ (6.60)
— Ok (1)) + Dy(t1) + DA (1) — D (1)
and
" . . L .
Ohp(t12) = +0%(t) — Qg(tz) —of(n) + Qg(tz) 66D
— okt + op(t1) + ok (1) — 0} (1) .
It may be proved by the reader that for the case f/ # f* the equation
D)fy(12) = Ghp(2) (6.62)

is obtained instead of (6.58).
The advantage of triple-differences is the canceling effect for the ambiguities,
which eliminates the need to determine them.

6.3.3 Correlations of the phase combinations

In general, there are two groups of correlations, (1) the physical and (2) the mathe-
matical correlations. The phases from one satellite received at two points, for exam-
ple, d)i‘ (#) and d)é(t), are physically correlated since they refer to the same satellite.
Usually, the physical correlation is not taken into account. The main interest is
directed to the mathematical correlations introduced by differencing.

The assumption may be made that the phase errors show a random behavior re-
sulting in a normal distribution with expectation value zero and variance o>, where
the variance is estimated by the UERE. Measured (or raw) phases are, therefore,
linearly independent or uncorrelated. Introducing a vector @ containing the phases
and assuming equal accuracy, then

Yo =01 (6.63)

is the covariance matrix for the phases, where I is the unit matrix.
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Correlation of single-differences
Considering the two points A, B and the satellite j at epoch ¢ gives

@’ (1) = D) - DL (1) (6.64)

as the corresponding single-difference. Forming a second single-difference for the
same two points but with another satellite k at the same epoch yields

Dk (1) = (1) — DA (1) (6.65)

The two single-differences may be computed from the matrix-vector relation

S=Co, (6.66)
where
g - [ ® () l
ESHORE .
AB <1>i(t)
C _ [ _1 1 O 0 (I) _ (D]B(t) (667)
0 0 -1 1] A (1)
A

The covariance law applied to Eq. (6.66) gives

X5 =CXeCh (6.68)
and, by substituting Eq. (6.63),

Y5 =Co?’ICT =o?CCT (6.69)
is obtained. Taking C from (6.67), the matrix product

1 0

T _
CC —2[0 |

] =21 (6.70)

substituted into (6.69) leads to the covariance of the single-differences
s =20°1. (6.71)

This shows that single-differences are uncorrelated. Note that the dimension of the
unit matrix in (6.71) corresponds to the number of single-differences at epoch ¢,
whereas the factor 2 does not depend on the number of single-differences. Consid-
ering more than one epoch, the covariance matrix is again a unit matrix with the
dimension equivalent to the total number of single-differences.
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Correlation of double-differences
Now, three satellites j, k, € with j as reference satellite are considered. For the two
points A, B and epoch ¢, the double-differences
" .
(DiB(t) = q)/]ZB(t) - q)iB(t) s

. . (6.72)
(DixB(t) = q)f;B(t) - (DiB(t)

can be derived from the single-differences. These two equations can be written in
the matrix-vector form

D=CS, 6.73)
where
b | @i
=| o ,
| O 50
(1) (6.74)

(-1 1 0 "
C = Lo o1l S =| 0,0

) @ 5(0)

have been introduced. The covariance matrix for the double-differences is given by
Xp=CXsC’ (6.75)
and substituting (6.71) leads to
Xp =202 CC" (6.76)

or, explicitly, using C from (6.74),

2 1
— 2
Xp =20 [ | 2]. (6.77)
This shows that double-differences are correlated. The weight or correlation matrix
P(?) is obtained from the inverse of the covariance matrix

11 2 -1
—y-l__- -
P =X, = 792 3 [ 1 9 } , (6.78)
where two double-differences at one epoch were used. Generally, with np being the
number of double-differences at epoch ¢, the correlation matrix is given by

np -1 -1

p 1 1 -1 np -1 ... 6.79
H=— .
@ 202 np+1]| 1 ’ ©.79)

np
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where the dimension of the matrix is np X np. For a better illustration, assume four
double-differences. In this case, the 4 X 4 matrix

4 -1 -1 -1
1 1] -1 4 -1 -1
P@) = 7525 -1 -1 4 -1 (6.80)
-1 -1 -1 4
is the correlation matrix. So far only one epoch has been considered. For epochs
t, tp, t3, ..., the correlation matrix becomes a block-diagonal matrix
P(z1)
P(r)
P@) = P(13) , (6.81)

where each “element” of the matrix is itself a matrix. The matrices P(¢1), P(%),
P(#3), ... do not necessarily have to be of the same dimension because there may
be different numbers of double-differences at different epochs.

Correlation of triple-differences

The triple-difference equations are slightly more complicated because several dif-
ferent cases must be considered. The covariance of a single triple-difference is com-
puted by applying the covariance propagation law to the relation, cf. Egs. (6.60) and
(6.64),

D (112) = DF (1) — D, (12) — DK (1) + @, (11). (6.82)

Now, two triple-differences with the same epochs and sharing one satellite are con-
sidered. The first triple-difference using the satellites j, k is given by Eq. (6.82). The
second triple-difference corresponds to the satellites j, £:

X _ )
O p(112) = X o (12) — D o(12) — DF (1)) + @ (1),

_ _ ) (6.83)
Cpfég(flz) = @' (1) — @ o(12) — DL H(11) + @ (1) -
By introducing
[ /K o .
- q)f.‘f(m) } ’ o (1)
| @ 5(t12) @k (1)
* D 5(11)
C - 1 -1 0 -1 1 0 S = ';‘B (6.84)
1 0 -1 -1 0 1] Dy p(12)
Dk (1)
A E)
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Table 6.1. Symbolic composition of triple-differences

Epoch 1 15)
Satellite | j &k ¢ j k £

o) | 1 -1 0]-1 1 0
)| 1 0 -1|-1 0 1

the matrix-vector relation

T=CS (6.85)
can be formed, and the covariance for the triple-difference follows from

Ir=CIsC' (6.86)
or, by substituting (6.71),

T =202 CCT (6.87)

is obtained, which, using (6.84), yields

5 4 (6.88)

X = 20’2[ 42 ]
for the two triple-differences (6.83). The tedious derivation may be abbreviated by
setting up Table 6.1. _

It can be seen that the triple-difference CI)ikB(tlz), for example, is composed of
the two single-differences (with the signs according to Table 6.1) for the satellites j
and k at epoch #; and of the two single-differences for the same satellites but epoch
ty. Accordingly, the same applies for the other triple-difference d)fé(tlz). Thus, the
coefficients of Table 6.1 are the same as those of matrix C in Eq. (6.84). Finally,
the product C CT, appearing in Eq. (6.87), is also aided by referring to Table 6.1.
All combinations of inner products of the two rows (one row represents one triple-
difference) must be taken. The inner product (row 1 - row 1) yields the first-row,
first-column element of C CT, the inner product (row 1 - row 2) yields the first-
row, second-column element of C CT, etc. Based on the general formula (6.82)
and Table 6.1, arbitrary cases may be derived systematically. Table 6.2 shows the
second group of triple-difference correlations if adjacent epochs 71, ,, t3 are taken.
Two cases are considered.

It can be seen from Table 6.2 that an exchange of the satellites for one triple-

difference causes a change of the sign in the off-diagonal elements of the matrix
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Table 6.2. Triple-difference correlations

EpOCh A 15 13 CCT
Satellite | j &k ¢| j k ¢ j k ¢

|1 -1 0l-1 1 0] 0 0 0| 4 -2
om0 0 o 1 -1 0[-1 1 0|-2 4

ofm)| 1 -1 0f-1 1 0] 0 0 0] 4 -1
om0 0 0o 1 0 -1[-1 0 1[-1 4

C CT. Therefore, the correlation of d)f‘]é(tlz) and (I)i‘%(tgg) produces +1 as off-
diagonal element. Based on a table such as Table 6.2, each case may be handled
with ease. According to Remondi (1984: p. 142), computer program adaptations
require only a few simple rules. These are the basic mathematical correlations for
single-, double-, and triple-differences.

More sophisticated models are investigated in Euler and Goad (1991), Ger-
dan (1995), Jin and Jong (1996) by taking into account the elevation dependence of
the observation variances. Gianniou (1996) introduces variable weights by forming
differences, applying polynomial fitting, and by using the signal-to-noise ratio for
code ranges as well as for phases. Jonkman (1998) and Tiberius (1998) consider
time correlation and crosscorrelation of the code ranges and the phases.

6.3.4 Static relative positioning

In a static survey of a single baseline vector between points A and B, the two re-
ceivers must stay stationary during the entire observation session. In the follow-
ing, the single-, double-, and triple-differencing are investigated with respect to the
number of observation equations and unknowns. It is assumed that the two sites
A and B are able to observe the same satellites at the same epochs. The practical
problem of satellite blockage is not considered here. The number of epochs is again
denoted by n;, and ny denotes the number of satellites.

The undifferenced phase as shown in Eq. (6.11) (where the satellite clock is
assumed to be known) is not included here, because there would be no connection
(no common unknown) between point A and point B. The two data sets could be
solved separately, which would be equivalent to point positioning.

A single-difference may be expressed for each satellite and for each epoch. The
number of measurements is, therefore, ng n,. The number of unknowns is written
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below the corresponding terms of the single-difference equation, cf. Eq. (6.42):

. 1 . ,
D) 5(1) = — 0) () + Nijp + [/ San(0),
AB ALY AB (6.89)

ngn; > 3 + ng + (nl‘_l)

The n, — 1 unknown clock biases indicate a rank deficiency of 1. The explanation
is the same as for static point positioning, cf. Eq. (6.12). From above, the relation

ng +2
ng =
ng—1

(6.90)

may be derived. Although this equation is equivalent to Eq. (6.13), it is useful to
repeat the (theoretically) minimum requirements for a solution. A single satellite
does not provide a solution because the denominator of (6.90) becomes zero. With
two satellites, there results n;, > 4, and for the normal case of four satellites, n;, > 2
is obtained.

For double-differences, the relationship of measurements and unknowns is ob-
tained using the same logic. Note that for one double-difference two satellites are
necessary. For n; satellites, therefore, n; — 1 double-differences are obtained at each
epoch so that the total number of double-differences is (n; — 1) n;. The number of
unknowns is written below the corresponding terms of the double-difference equa-
tion, cf. Eq. (6.45):

i Lk ik
ol ==+ N,
AB 1548 AB 6.91)
(ng—1yn; > 3 +(ng—1).
From above, the relation
2
>t (6.92)
ng—1

is obtained, which is identical with Eq. (6.90) and, therefore, the basic configura-
tions are again given by the pairs ny = 2,n, > 4 and ny = 4, n, > 2. To avoid linearly
dependent equations when forming double-differences, a reference satellite is used,
against which the measurements of the other satellites are differenced. For example,
take the case where measurements are made to the satellites 6, 9, 11, and 12 and 6
is used as reference satellite. Then, at each epoch the following double-differences
can be formed: (9-6), (11-6), and (12-6). Other double-differences are linear com-
binations and, thus, linearly dependent. For instance, the double-difference (11-9)
can be formed by subtracting (11-6) and (9-6).

Note that relation (6.92) also applies if the frequencies of the satellite signals
are not equal. Referring to (6.54), the number of single-difference ambiguities cor-
responds to that of (6.89) and amounts to ng, which may be combined to ny — 1
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double-difference ambiguities if the single-difference ambiguities of one satellite
are taken as reference.

The triple-difference model includes only the three unknown point coordinates.
For a single triple-difference, two epochs are necessary. Consequently, in the case
of n; epochs, n; — 1 linearly independent epoch combinations are possible. Thus,

‘ 1 4
o (1 =— 0" (t12),
' p(112) 1 045(112) 6.93)
ng—1Dm;—1)> 3
are the resulting equations. From above, the relation
2
> (6.94)
ng—1

is obtained. This equation is identical with Eq. (6.90) and, hence, the basic config-
urations are again given by the pairs n; = 2,n, > 4 and ny, = 4,n, > 2.

This completes the discussion on static relative positioning. As shown, each of
the mathematical models — single-difference, double-difference, triple-difference —
may be used. The relationships between the number of observation equations and
the number of unknowns will be referred to again in the discussion of the kinematic
case.

6.3.5 Kinematic relative positioning

In kinematic relative positioning, the receiver on the known point A of the baseline
vector remains fixed. The second receiver moves, and its position is to be deter-
mined for arbitrary epochs. The models for single-, double-, and triple-difference
implicitly contain the motion in the geometric distance. Considering point B and
satellite j, the geometric distance in the static case is given by, cf. Eq. (6.2),

oh(t) = N(XI() = Xp)? + (Yi(1) — Yp)* + (ZI(1) — Z)? (6.95)

and in the kinematic case by

op(t) = V(1) = Xp(0)? + (YI() = Yp(1)? + (ZI(1) - Zs())? . (6.96)

where the time dependence for point B appears. In this mathematical model, three
coordinates are unknown at each epoch. Thus, the total number of unknown site
coordinates is 3 n; for n; epochs. The relations between the number of observations
and the number of unknowns for the kinematic case follow from the static single-
and double-difference models, cf. Egs. (6.89), (6.91):

single-difference: ngn; >3 +ng+m—1),

double-difference: (ng— 1)n; >3 n, + (ns— 1). (6.97)
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For example, the relation

ng—1
ng = :
ng —4

(6.98)

is the basic configuration for single-differences, which is equivalent to Eq. (6.15).

The continuous motion of the roving receiver restricts the available data for the
determination of its position to one epoch. But none of the above two models pro-
vides a useful solution for n; = 1. Thus, these models are modified: the number
of unknowns is reduced by omitting the ambiguity unknowns, i.e., the ambiguities
are assumed to be known. For the single-difference case, this has a twofold effect:
first, the ny ambiguities may be omitted and, second, the rank deficiency vanishes
because of the known ambiguities so that n, unknown clock biases have to be deter-
mined. The modified observation requirement for the single-difference is therefore
ngn; > 4n, and reduces to ny; > 4 for a single epoch. Similarly, for the double-
difference ny — 1 ambiguities are omitted in (6.97) so that (ny — 1) n, > 3 n, results,
which reduces to ny > 4 for a single epoch. Hence, the single-difference and the
double-difference models end up again with the fundamental requirement of four
simultaneously observable satellites.

The use of triple-differences for kinematic cases is strongly restricted. In prin-
ciple, the definition of triple-differences with two satellites at two epochs and two
stations at — with respect to the two epochs — fixed positions exclude any applica-
tion since the rover position changes epoch by epoch. However, triple-differences
could be used if, e.g., the coordinates of the roving receiver were known at the
reference epoch. In this case, adapting (6.93) to the kinematic case with 3 n; un-
knowns and reducing the number of unknown rover positions by 3 because of the
known rover position at the reference epoch, the relationship obtained would be
(ng—1)(n; — 1) > 3(n; — 1). This leads to ny; > 4, which is the same requirement as
for the ambiguity-reduced single- and double-differences.

Omitting the ambiguities for single- and double-difference means that they
must be known. The corresponding equations are simply obtained by rewriting
(6.89) and (6.91) with the ambiguities shifted to the left side of the equations. The
single-differences become

‘ . 1 ,
D50 = Nijp = I Ohp(®) + f7 6ap(1) (6.99)

and the double-differences
. . 1
(1) = Nip = ~ 4p(0). (6.100)

where the unknowns now appear only on the right sides.
If the frequencies of the satellite signals are not equal, an analogous relation
for the double-difference is obtained. Referring to (6.55), the two terms containing
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ambiguities may be shifted to the left side to indicate that they are known. Then the
only remaining term on the right side is Qi%(l).

Thus, all of the equations can be solved if one position of the moving receiver is
known. Preferably (but not necessarily), this will be the starting point of the moving
receiver. The baseline related to this starting point is denoted as the starting vector.
With a known starting vector, the ambiguities are determined and are known for all
subsequent positions of the roving receiver as long as no loss of signal lock occurs
and a minimum of four satellites is in view.

Static initialization

Three methods are available for the static determination of the starting vector. In
the first method, the moving receiver is initially placed at a known point, creating
a known starting vector. The ambiguities can then be calculated from the double-
difference model (6.91) as real values and are then fixed to integers. A second
method is to perform a static determination of the starting vector. The third ini-
tialization technique is the antenna swap method according to B.W. Remondi. The
antenna swap is performed as follows: denoting the reference mark as A and the
starting position of the moving receiver as B, a few measurements are taken in this
configuration, and with continuous tracking, the receiver at A is moved to B, while
the receiver at B is moved to A, where again a few measurements are taken. This
is sufficient to precisely determine the starting vector in a very short time (e.g., 30
seconds). Often, a second antenna swap is performed by moving the receivers to
their starting positions.

Kinematic initialization

Special applications require kinematic GNSS without static initialization since the
moving object whose position is to be calculated is in a permanent motion (e.g., a
buoy or an airplane while flying). Translated to model equations, this means that
the most challenging case is the determination of the ambiguities on-the-fly (OTF).
The solution requires an instantaneous ambiguity resolution or an instantaneous
positioning (i.e., for a single epoch). This strategy sounds very simple but it can re-
quire advanced methods. A vast literature has been written on this important topic.
The main problem is to find the position as fast and as accurately as possible. This
is achieved by starting with approximations for the position and improving them
by least-squares adjustments or search techniques.

6.3.6 Pseudokinematic relative positioning

The pseudokinematic method can be identified as static surveying with large data
gaps (Kleusberg 1990). The mathematical model, e.g., for double-differences, cor-
responds to Eq. (6.91) where generally two sets of phase ambiguities must be
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resolved since the point is occupied at different times. B.W. Remondi also has
applied the triple-difference method followed by the ambiguity function method
(Sect. 7.2.3) to avoid ambiguities altogether. Processing of the data could start with
a triple-difference solution for the few minutes of data collected during the two oc-
cupations of a site. Based on this solution, the connection between the two ambigu-
ity sets is computed (Remondi 1990b). After the successful ambiguity connection,
the normal double-difference solutions are performed.

The time span between the two occupations is an important factor affecting ac-
curacy. Willis and Boucher (1990) investigate the accuracy improvements by an
increasing time span between the two occupations. As a rule of thumb, the mini-
mum time span should be one hour.

Note that the pseudokinematic relative positioning method is rarely used today.

6.3.7 Virtual reference stations

When processing a baseline, the effects of orbit errors, ionospheric and tropospheric
refraction are reduced by forming differences of the observables, e.g., double-
differences. These effects grow with increasing baseline length. Therefore, it is
good practice to use short baselines requiring a reference station close to the rover.
These basic considerations have led to reference station networks like the Austrian
positioning service (APOS), the German satellite positioning service (SAPOS), and
several others. After the establishment of such networks, some new ideas have
evolved to exploit the available data accordingly. Among many others, real-time
differential error modeling in reference station networks (Wanninger 1997), multi-
base real-time kinematic (RTK) positioning using virtual reference stations (Vol-
lath et al. 2000), and network-based techniques for RTK applications (Wiibbena et
al. 2001) are respective examples.

Even in case of an existing reference station network it is desirable to further
reduce the baseline length. The idea is to generate “observation data” for a nonex-
isting station, i.e., a virtual station, from real observations of a multiple reference
station network and to transmit these data to the rover station. This is the basic prin-
ciple of the virtual reference station (VRS) concept. Usually, the data of three or
more reference stations surrounding the VRS are taken to calculate the observation
data for the VRS. The result of this concept yields a horizontal accuracy at the level
of 5 cm for baselines up to 35 km (Retscher 2002).

Understanding the VRS principle by an elementary approach

The objective is to transform measurements made at real reference stations to the
location of the VRS, i.e., to a different location. This implies that all terms of the
observation equation model depending on the reference receiver location have to
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be corrected to account for the new location. To keep it as simple as possible, the
phase pseudorange

1
(1) = — 0} + N + f* AG}(1). (6.101)

as given in (6.10) after substitution of f* = ¢/A%, is considered. On the left side,
®:(r) is the measured carrier phase which is modeled by o7(¢), the geometric dis-
tance between receiver and satellite, the time-independent integer ambiguity N},
and Ad7(#), the combined receiver and satellite clock bias. Now the key question
is which of the terms is location-dependent? In other words, which of the terms
changes if the same receiver is assumed at another location but considered at the
same epoch ¢? The answer is @;(f) and pi(¢), because the other two terms do not
change with varying location.

Now it is assumed that receiver r is once located at the real reference station
A represented by the coordinate vector X4 and once at the virtual reference station
(VRS) represented by Xy. Then there result from these two locations from (6.101)
the two equations

1
;(Xa,0) = 75 0;(Xa, 1) + N + [* A6(1),

1 (6.102)
0;Xy. 1) = % 0/ Xy, 1)+ N + 7 A6(1),

where the location dependence is indicated accordingly. Forming the difference of
the two equations yields

1 1
O}(Xy. 1) = O)(Xa.) = - 03Xy 1) = - 03(Xa.1). (6.103)

where the ambiguity and the clock error have vanished. After a slight rearrange-
ment,

1
O}(Xy.1) = O}(Xa.1) + 3 [0}Xy. 1) — 03X, )] (6.104)

results. The left-hand side is the desired “measurement quantity” at the virtual ref-
erence station. Therefore, if all terms on the right-hand side may be obtained, then
there is no need to actually measure it. The term ©7(X4y, ¢) refers to the real refer-
ence station A and is measured. Accordingly, 05(X4,?) is known since the station
coordinates of A and the satellite coordinates of s are known and calculable, respec-
tively. The only remaining term to be discussed is 0} (Xy, #), which comprises the
coordinates of the virtual reference station. Figure 6.3 shows the network of refer-
ence stations A, B, C, . . ., the virtual reference station, and the user receiver position
indicated by r. In principle, the location of the virtual reference station is arbitrary;
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B o
Fig. 6.3. Network of reference stations with the VRS denoted as V and
the roving user receiver indicated by r

however, the baseline between the receiver » and the virtual reference station V
should be smaller than the baselines between r and any other of the real reference
stations. A very useful and convenient location is therefore an approximate posi-
tion of the user receiver which may readily be obtained by point positioning with
code measurements, yielding Xy, the coordinates of the VRS. Once the coordinates
of the virtual station are known, they may remain fixed for the subsequent epochs
(unless the roving user receiver moves too far from the VRS).

In summary, the right-hand side of (6.104) is now fully determined. Thus, the
observable ®;(Xy, r) of the VRS may be obtained without actually measuring it.
Since X4 and Xy are known as well, the computation of 03(X4, f) and 0}(Xy, ?) is
straightforward for the subsequent epochs; and ®;(X4, ) is measured at the real
reference station A.

The more complex reality

Is it really that simple? In theory “yes”, but in practice “no” since (6.101) and
(6.102) are idealized models without taking into account errors like satellite orbit
errors, ionospheric and tropospheric refraction. These errors may be considered for
the real reference station A by the collective term

AS(Xy, 1) = AOPX Yy, 1) + AP(Xy, 1) + ATOP(Xy, 1) . (6.105)

Consequently, model (6.102) for the measurement equation of the reference station
A is expanded to

1
O} (Xy, 1) = - 0;(Xa, D) + N + fP A5 (1) + AX(Xa, 1) (6.106)
and in analogous form for all other real reference stations. To estimate the error
term properly, all baselines of the reference network are solved. Note that this also
requires the correct ambiguity determination (which should in general not be a
major problem because the station coordinates are known). The desired results of



6.3 Relative positioning 191

the network solution are the error residuals A} (Xy, ), AY(Xp, £), . . . for all reference
stations and at every epoch individually.
Similarly, the relation (6.104) for the VRS is improved by

1
O}(Xy.1) = O}(Xa.1) + 75 [0}Xv 1) — 0K 0] + A)Ky. 1), (6.107)

but now the problem arises to determine A;(Xy, #) for the VRS.

An intuitively simple approach is to take the error residuals Aj (X4, 1), Ai(X3p, 1),
AS(Xc, t) of three reference stations A, B, C surrounding the VRS and to compute
Al(Xy,t) by a weighted mean for which the weights depend inversely on the dis-
tance between the virtual reference station and the respective real reference station.

Another approach is to model the error residuals at the reference stations i by

ANXi,t)=aX;+bYi+cZ;, (6.108)

where X;, Y;, Z; are the coordinates of the reference stations (e.g., ECEF coordinates
or plane coordinates supplemented by a height component). Assuming three real
reference stations A, B, C, the coeflicients a, b, ¢ can be calculated.

To determine the error residual AJ(Xy, ¢) for the virtual reference station, use
(6.108) by substituting the coefficients a, b, ¢ and the coordinates of the VRS.

If more than three real reference stations are available, the model (6.108) can
either be extended or a least-squares adjustment applied.

A few more words should be spent on the modeling of the error term (6.105).
First, it may further be expanded by taking into account additional error influences
like antenna phase center offset and variation or multipath. Note, however, these
purely station-dependent terms are uncorrelated between stations and it does not
make sense to transfer their influence to the VRS by the approach as shown above.
Therefore, these error influences must be reduced or corrected by proper modeling
or simply neglected.

Second, the influence of the ionosphere and the troposphere in (6.105) may
also be reduced by data combinations (Sect. 5.2) or modeling (Sects. 5.3.2, 5.3.3).
Nevertheless, remaining residuals will contribute to the error term.

Several other approaches for modeling the error term are proposed. Wiibbena
et al. (2001) and Wanninger (2002) propose area correction parameters, Landau et
al. (2002) mention a weighted linear approximation approach and a least-squares
collocation. Dai et al. (2001) compare several interpolation algorithms like linear
combination model, distance-based linear interpolation method, linear interpola-
tion method, low-order surface model, and least-squares collocation and find out
comparable performances.
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7.1 Data preprocessing

7.1.1 Data handling

Downloading

Both the observables and the navigation message and additional information are
generally stored in a binary (and receiver-dependent) format. The downloading of
the data from the receiver is necessary before postprocessing can begin.

Most GNSS manufacturers have designed a data management system which
they recommend for data processing. Individual software is fully documented in
the manuals of the manufacturers and will not be covered here.

Data exchange

Although the binary receiver data may have been converted into computer-inde-
pendent ASCII format during downloading, the data are still receiver dependent.
Also, each GNSS processing software has its own format which necessitates the
conversion of specific data into a software-independent format when they are pro-
cessed with a different type of program.

From the preceding, one may conclude that a receiver-independent format of
GNSS data promotes data exchange. This has been realized by the receiver-inde-
pendent exchange (RINEX) format. This format was first defined for GPS data in
1989 and has been published in a second version by Gurtner and Mader (1990).
Later, several minor changes were adopted and in 1997 the format was extended
to also account for GLONASS. Further updates are covered in the versions 2.10
and 2.11. As of 2006, RINEX 3.0 is the latest version. Gurtner and Estey (2006)
describe this version in full detail.

The data of the measurement campaign is commonly stored in three ASCII
file types: (1) the observation data file, (2) the navigation message file, and (3) the
meteorological data file. Each file comprises a header section and a data section.
The header section contains generic file information, and the data section contains
the actual data.

Basically, the observation and meteorological data files must be created for each
site of the session. The RINEX (version 2 and higher) also permits the inclusion
of observation data from more than one site subsequently occupied by a roving
receiver. However, according to Gurtner and Estey (2006) it is not recommended to
assemble data of more than one receiver (or antenna) into the same file.
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The navigation message file is more or less site independent. In order to avoid
the collection of identical satellite navigation messages from different receivers,
one navigation message file only is created containing nonredundant information
and being possibly composite from several receivers.

To demonstrate the potential of RINEX, a few details of the recommended
specification are described. RINEX uses the filename convention “ssssdddf.yyt”.
The first four characters of the sequence (ssss) are the site identifier, the next three
(ddd) indicate the day of year, and the eighth character (f) is the session indicator.
The first two file extension characters (yy) denote the last two digits of the current
year, and the file type (t) is given by the last character. This file type may indi-
cate an observation file, a GPS, GLONASS, or Galileo navigation message file,
a meteorological data file, a mixed GNSS navigation message file, a space-based
augmentation system (SBAS) payload navigation message file, an SBAS broadcast
data file, etc.

The satellite designation is defined in the form “snn”. The first character (s) is
an identifier of the satellite system, and the remaining two digits denote the satellite
number. Examples for the identifier s of the satellite system are GPS, GLONASS,
SBAS payload, Galileo. Thus, the RINEX format enables the combination of ob-
servations of different satellite types.

At present, RINEX is the most favored format. As a consequence, all receiver
manufacturers implement software for the conversion of their receiver-dependent
format into RINEX.

The software-independent exchange (SINEX) format is mentioned for the sake
of completeness. This format enables the exchange of processing results and is
used, for example, by the IGS (Mervart 1999). Further information is available at
http://tau.fesg.tu-muenchen.de/~iers/web/sinex/format.php (SINEX versions 2.00,
2.01). Recently, the SINEX version 2.10 was proposed in the International Earth
Rotation Service (IERS) Message no. 96 to include Galileo regarding the station
and satellite information for the specific frequencies. Some more new parame-
ters were added. This proposal can be found under http://www.iers.org/documents/
ac/sinex/sinex_v210_proposal.pdf.

7.1.2 Cycle slip detection and repair

Definition of cycle slips

When a receiver is turned on, the fractional part of the beat phase (i.e., the differ-
ence between the satellite-transmitted carrier and a receiver-generated replica) is
observed and an integer counter is initialized. During tracking, the counter is in-
cremented by one cycle whenever the fractional phase changes from 27 to 0. Thus,
at a given epoch, the observed accumulated phase Ay is the sum of the fractional
phase ¢ and the integer count n. The initial integer number N of cycles between the



7.1 Data preprocessing 195
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Fig. 7.1. Schematic representation of a cycle slip

satellite and the receiver is unknown. This phase ambiguity N remains constant as
long as no loss of the signal lock occurs. In this event, the integer counter is reini-
tialized, which causes a jump in the instantaneous accumulated phase by an integer
number of cycles. This jump is called a cycle slip which, of course, is restricted to
phase measurements.

A schematic representation of a cycle slip is given in Fig. 7.1. When the mea-
sured phases are plotted versus time, a fairly smooth curve should be obtained. In
the case of a cycle slip, a sudden jump appears in the plotted curve. Three sources
for cycle slips can be distinguished. First, cycle slips are caused by obstructions of
the satellite signal due to trees, buildings, bridges, mountains, etc. This source is
the most frequent one (particularly for kinematic activities based upon the carrier
phase). The second source for cycle slips is a low S/N due to bad ionospheric con-
ditions, multipath, high receiver dynamics, or low satellite elevation. A third source
is a failure in the receiver software (Hein 1990b), which leads to incorrect signal
processing. Cycle slips could also be caused by malfunctioning satellite oscillators,
but these cases are rare.

As seen from Fig. 7.1, cycle slip detection and repair requires the location of the
jump (i.e., cycle slip) and the determination of its size. Detection is accomplished
by a testing quantity. Repairs of cycle slips are made by correcting all subsequent
phase observations for this satellite and this carrier by a fixed integer number of
cycles. The determination of the cycle slip size and the correction of the phase data
is often denoted as cycle slip repair or fixing.

Testing quantities

For a single site, the testing quantities are raw phases, phase combinations, com-
binations of phases and code ranges, or combinations of phases and integrated
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Doppler frequencies. Single receiver tests are important because they enable in situ
cycle slip detection and repair by the internal software of the receiver.

When the data of two sites are combined, single-, double-, or triple-differences
can be used for cycle slip detection. This means that, in a first step, unrepaired
phase combinations are used to process an approximate baseline vector. The cor-
responding residuals are then tested. Quite often several iterations are necessary to
improve the baseline solution. Note that triple-differences can achieve convergence
and rather high accuracy without fixing cycle slips. Note also that triple-differences
make the amount of double-difference cycle slips very clear — in the static case.

Subsequently, the testing quantities for a single site are treated in more detail.

Raw phases
The measured raw phase ®;(#) can be modeled by

AD5(1) = 05(1) + AN + c ASS(r) — A" (1) + ..., (7.1)

where r and s denote the receiver site and the satellite, respectively. Note that the
phase model contains a number of time-dependent terms on the right side of (7.1)
which may prevent cycle slip detection.

Phase combinations

The model for the dual-frequency phase combination is developed considering a
single site, a single satellite, and a single epoch. Thus, the sub- and superscripts and
even the time dependency in Eq. (7.1) may be omitted. According to Eq. (5.76), the
phases are modeled by

b
<D1=6lf1+N1—]7,

; (72)
Oy=afy+Ny— —,

f

where the frequency dependency is shown explicitly by the subscripts 1 and 2.
In order to eliminate the geometry term a, the first equation of (7.2) is multiplied
by f> and the second by f;. Subtracting the resulting equations yields

£ = f102 = HN1 — fiNy — b(é - ﬁ) (7.3)
i f
and dividing the difference by f, gives
N h b(fa fi
o - Lo, =N Ly -2 (21 4
1 7 2 = Nj p N, % (fl fz) (7.4)
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or, by extracting f>/ fi from the term in parentheses on the right side of the equation,
the final form of the geometry-free phase combination

2
(Dl—ﬁ(DZ:Nl—ﬁNz—ﬁ(l—]i] (7.5)

f f fi 13

is obtained. The left side of Eq. (7.5) is identical with the ionospheric residual,
cf. Eq. (5.21). The right side shows that the only time-varying quantity is the iono-
sphere term b. In comparison to the influence on the raw phases in Eq. (7.1), the in-
fluence of the ionosphere on the dual-frequency combination is affected by the fac-
tor (1 — f2/ ;). Substituting typical GNSS values, f; = 1.6 GHz and f> = 1.2 GHz,
this factor is —0.78.

If there are no cycle slips, the temporal variations of the ionospheric residual
would be small for normal ionospheric conditions and for short baselines. Indica-
tors of cycle slips are sudden jumps in successive values of the ionospheric residual.
The remaining problem is to determine whether the cycle slip was on phase data
referring to f or f> or both. This will be investigated in the next paragraphs.

Phase and code range combinations
Another testing quantity follows from a phase and code range combination. Mod-
eling the carrier phase and the code pseudoranges by

AD(1) = 03(t) + AN? + ¢ ASS(t) — Al°(1) + ATOP(¢),

Ri(H) =051 + ¢ ASS(t) + AlO"(¢) + ATOP(z) (7.6)
and forming the difference
ADS(1) — RE(r) = ANS — 2 Al°™(p) (7.7)

provides a formula where the time-dependent terms (except the ionospheric refrac-
tion) vanish from the right side of the equation. Thus, the phase and code range
combination could also be used as testing quantity. The ionospheric influence may
either be modeled or neglected. The change of A°"(¢) will be fairly small between
closely spaced epochs; this might justify neglecting the ionospheric term. It may
also be neglected when using double-differences.

The simple testing quantity (7.7) has a shortcoming which is related to the
noise level. The phase and code range combinations have a noise level in the range
of 5 cycles. This noise is mainly caused by the noise level of the code measure-
ments and to a minor extent by the ionosphere. The noise of code measurements
is larger than the noise for phase measurements because resolution and multipath
are proportional to the wavelength. Traditionally, the measurement resolution was
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A/100; today, receiver hardware is achieving improved measurement resolutions
approaching 4/1000. In other words, this leads to code range noise levels of a few
centimeters. Hence, the phase and code range combination could be an ideal testing
quantity for cycle slip detection.

Combination of phases and integrated Doppler

Comparing differences of measured phases with phase differences derived from in-
tegrated Doppler which has the advantage of being immune from cycle slips is a
further possibility for a testing quantity.

Detection and repair

Each of the described testing quantities allows the location of cycle slips by check-
ing the difference of two consecutive epoch values. This also yields an approximate
size of the cycle slip. To find the correct size, the time series of the testing quantity
must be investigated in more detail. Note that for all previously mentioned testing
quantities, except the ionospheric residual, the detected cycle slip must be an inte-
ger. In certain processing scenarios, cycle slips are easy to detect and repair without
knowing which satellite or receiver had the problem.

One of the methods for cycle slip detection is the scheme of differences. The
principle can be seen from the example in Table 7.1. Assume a time series y(#;), i =
1,2,...,7, for a signal which contains a jump of & at epoch #4. Note that any of the
described testing quantities may be used as signal for the scheme of differences.

Table 7.1. Scheme of differences

oy Yoy oy Y

131 0
0

15) 0 0
0 >

3 O £ -3¢
& —2e

th & - 3e
0 £

t5 & 0 -
0 0

te & 0
0

t7 &
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The terms y1 s yz, y3, y4 denote the first-order, second-order, third-order, and fourth-
order differences. The important property in the context of data irregularities is
the amplification of a jump in higher-order differences and, thus, the improved
possibility of detecting the jump. The theoretical reason implied is the fact that
differences are generated by subtractive filters. These are high-pass filters damping
low frequencies and eliminating constant parts. High-frequency constituents such
as a jump are amplified. Replacing the signal y(#;), for example, by the phase and
assuming € to be a cycle slip, the effect of the scheme of differences becomes
evident.

A method to determine the size of a cycle slip is to fit a curve through the testing
quantities before and after the cycle slip. The size of the cycle slip is found from
the shift between the two curves. The fits may be obtained from a simple linear re-
gression or from more realistic least-squares models. These methods are generally
called interpolation techniques. Other possibilities are prediction methods such as
Kalman filtering (Sect. 7.3). At a certain epoch, the function value (i.e., one of the
testing quantities) for the next epoch is predicted based on the information obtained
from preceding function values. The predicted value is then compared with the ob-
served value to detect a cycle slip. The application of Kalman filtering for cycle
slip detection is demonstrated by, e.g., Landau (1988). In static processing, the best
method of detecting the amount of the double-difference integer jump is the triple-
difference method. While this method, by itself, may not indicate which satellite or
which epoch or which receiver caused the missing integer, it does indicate how to
fix the double-difference integer exactly. Once fixed, double-difference processing
can proceed.

When a cycle slip has been detected, the testing quantities can be corrected by
adding the size of the cycle slip to each of the subsequent quantities. The assign-
ment of the detected cycle slip to a single-phase observation is ambiguous if the
testing quantities were phase combinations. An exception is the ionospheric resid-
ual. Under special circumstances, this testing quantity permits a unique separation.
Consider Eq. (7.5) and assume ambiguity changes AN; and AN, caused by cycle
slips. Consequently, a jump AN in the ionospheric residual would be detected. This
jump is equivalent to

AN = AN; — ﬁ AN, , (7.8)
g

where AN is no longer an integer. Equation (7.8) represents a diophantine equation
for the two integer unknowns AN; and AN;. This means, there is one equation with
two unknowns; hence, there is no unique solution. This can be seen by solving
for integer values AN; and AN, such that AN becomes zero. To get AN = 0 and
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considering as an example fi/f, = 77/60, the condition

7
AN = il ANy = — AN, (7.9)

b 60
must be fulfilled. This means that AN; = 77 and AN, = 60 cannot be distin-
guished from AN; = 154 and AN, = 120 since both solutions satisfy Eq. (7.9).
However, the solution would be unambiguous if AN is less than 77 cycles. So far
the consideration assumed error-free measurements. To be more realistic, the effect
of measurement noise must be taken into account. A simple model for the phase
measurement noise is

oo = 0.01 cycles, (7.10)

which corresponds to a resolution of 4/100. The same model is applied to both
carriers and, thus, frequency-dependent noise such as multipath is neglected. The
assumption is not correct for codeless or quasi-codeless receivers since additional
noise is introduced during signal processing.

The value AN, in principle, is derived from two consecutive ionospheric resid-
uals. Hence,

AN = O(t + A1) — ﬁ Oy(t + At) — [CD](I) — Ji (Dz(t)] (7.11)
g f

and applying to this equation the error propagation law gives
oay =230¢ =0.023 cycles. (7.12)

The 30 error yields approximately 0.07 cycles. This may be interpreted as the reso-
lution of AN. The conclusion is that two AN calculated by (7.8) and using arbitrary
integers, AN; and AN, must differ by at least 0.07 cycles in order to be uniquely
separable. A systematic investigation of the lowest values for AN, AN, is given in
Table 7.2. For AN and AN, the values 0, +1, £2, ..., +5 have been permutated
and AN calculated by (7.8). Table 7.2 is sorted with increasing AN in the first col-
umn. In the second column, the first-order differences of the function values AN
are given. To shorten the length of the table, only the negative function values AN
and zero are displayed. For supplementing with positive function values, the signs
in the first, third, and fourth column must be reversed.

Those lines in Table 7.2 being marked with an asterisk do not fulfill the criterion
of an at least 0.07 cycle difference. For these values, an unambiguous separation is
not possible because the measurement noise is larger than the separation value.
Consider the next to the last line in Table 7.2. A jump in the ionospheric residual
of about 0.14 cycle could result from the pair of cycle slips AN| = =4, AN, = -3
or AN; =5, AN, = 4; however, notice that for the marked lines either AN or AN,
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Table 7.2. Resulting AN by permutating ambiguity changes of AN| and AN,

AN Diff. AN, AN, AN Diff. AN, AN,
1142 s 5 37 5
1042 (1)'88 4 5 _3.56 8’}2 1 2
_1013 929 5 4 34 O 3 5
071 0.14
042 0703 5 38 0 ]
913 929 4 4 3153 O 2 4
0.28 0.13
_8.85 -5 3 -3.00 3 0
0.43 0.15
842 09 5 285 0131 3
813 02 3 4 2m B4
785 02 4 3 236 018 o 2
756 929 s 2 a4 O 5
0.14 0.02 *
742 1 5 242 4 5
0.29 0.14
713 2 4 208 1 1
0.28 0.15
685 035 -3 3 213 083 4
656 02 2 200 0132 0
a4 O 0 5 185 O 2 3
0.14 0.13
628 5 ! 152 3
0.15 0.16
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Ssa2 1t 5 128 1% 0 ]
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S13 010 4 -3 00 g 4
500 013 s 0 oo 13 0
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385 0130 3 013 002% s 4
a7 OB 5 000 © 0 0

equals 5 (plus or minus). Therefore, omitting the values for ANy = +5 and AN, =
+5 creates uniqueness in the sense of separability. Up to +4 cycles the function

values AN are discernible by 0.12 cycles.

The conclusions for cycle slip repair using the ionospheric residual are as fol-
lows. Based on the measurement noise assumption in (7.10), the separation of the
cycle slips is unambiguously possible for up to +4 cycles. A smaller measurement
noise increases the separability. For larger cycle slips, another method should be
used in order to avoid wrong choices in ambiguous situations.

Most often, there will be more than one cycle slip. In these cases, each cycle slip
must be detected and corrected individually. The corrected phases, single-, double-,
or triple-differences are then used to process the baseline.



202 7 Data processing

In recent years, fixing cycle slips by combining GNSS data with data of other
sensors, mainly inertial navigation systems (INS), succeeded to some extent. As
Colombo et al. (1999) demonstrate, even a moderately accurate (and low-cost) INS,
which is also small, lightweight, and portable, can substantially enhance the ability
to detect and correct cycle slips. If the INS data must bridge GNSS data gaps in a
stand-alone mode, this bridging time is the critical factor for keeping the desired
high accuracy. It depends on several factors as, e.g., the type of application, the
baseline length, the accuracy of the INS. Accordingly, the bridging time may be
limited from a few seconds only to a few minutes. Details on the GNSS/INS data
modeling and on tests are given in Schwarz et al. (1994), Colombo et al. (1999),
Altmayer (2000), EI-Sheimy (2000), Alban (2004), Kim and Sukkarieh (2005).

7.2 Ambiguity resolution

7.2.1 General aspects

The ambiguity inherent with phase measurements depends upon both the receiver
and the satellite. There is no time dependency as long as tracking is maintained
without interruption. In the model for the phase,

1 1
(D:/—lg+fA6+N—§AI°“°, (7.13)

the ambiguity is denoted by N. As soon as the ambiguity is determined as an inte-
ger value, the ambiguity is said to be resolved or fixed. In general, ambiguity fixing
strengthens the baseline solution. Joosten and Tiberius (2000) give an illustrative
example. First, a short baseline is computed conventionally and the ambiguities are
resolved. Then, introducing the float ambiguities (i.e., real values) and the fixed
ambiguities (i.e., integer values), respectively, as given quantities, single-point po-
sitions on an epoch-by-epoch basis show a strong difference in the precision: with
real-valued ambiguities, the solutions are scattering in the meter range in the coor-
dinate components north, east, and up. For the integer-fixed solution, the precision
of the coordinates is below the 1 cm level. But sometimes solutions with fixed am-
biguities and float ambiguities may agree within a few millimeters.

The use of double-differences instead of single-differences for carrier phase
processing is important. The reason is that in the case of single-differences an addi-
tional unknown parameter for the receiver clock offset must be considered, which
prevents an effective separation of the integer ambiguities from the clock offset.
In the case of double-differences, the clock terms have been eliminated and the
isolation of the ambiguities is possible.

In order to fully exploit the high accuracy of the carrier phase observable,
the ambiguities must be resolved to their correct integer value since one cycle
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may translate to a range error of some decimeters for GNSS carriers. It should
be stressed here that integer ambiguity resolution may not always be possible. One
of the reasons is the baseline length. When considering short baselines (e.g., some-
times <20 km), the model for double-difference phases may be simplified to

k

J Jjk
A0

(1) = 0l (1) + AN/ + noise (7.14)
since the effects of the ionosphere, the troposphere, and other minor effects may
in general be neglected. Any significant residual error from these neglected terms
will spill over into the unknown parameters, namely station coordinates and ambi-
guities, and has the effect of degrading both the position accuracy and the integer
nature of the ambiguities. Thus, if applications require a long range from the refer-
ence station, there may be a need to install several reference stations for integer am-
biguity resolution or to apply the concept of virtual reference stations (Sect. 6.3.7).

Another important aspect of ambiguity resolution is the satellite geometry,
which can be viewed from two points. First, an increasing number of satellites
tracked at any instant translates in general into a better dilution of precision (DOP)
value. Thus, all-in-view receivers with the ability to track all visible satellites are
preferable since redundant satellites aid in the efficiency and reliability of ambi-
guity resolution. The second point with respect to geometry is the length of time
required to resolve ambiguities. The information content of the carrier phase is a
function of time which is directly correlated to the movement of the satellite. This
last point can be illustrated through an example. Suppose two datasets. The first
one consists of observations collected every 15 seconds for one hour, for a total of
240 measurements per satellite. Measurements for the second dataset are collected
every second for four minutes, for a total of 240 measurements per satellite. Al-
though the number of measurements is the same, the information content clearly is
not. The first dataset has a higher probability of correct ambiguity resolution since
the elapsed time is longer. The time is a critical component of ambiguity resolution
even under good geometric conditions.

Multipath is also a critical factor for ambiguity resolution. Since multipath is
station dependent, it may be significant even for short baselines. As in the case of
atmospheric and orbital errors for long baselines, multipath has the effect of both
contaminating the station coordinates and ambiguities.

Ambiguity resolution involves three major steps. The first step is the genera-
tion of potential integer ambiguity combinations that should be considered by the
algorithm. A combination is composed of an integer ambiguity for, e.g., each of the
double-difference satellite pairs. In order to determine these combinations, a search
space must be constructed. The search space is the volume of uncertainty which
surrounds the approximate coordinates of the unknown antenna location. Since the
search space dictates which integer ambiguities will be considered, it should be
conservatively selected since it must contain the true antenna location. In the case
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of static positioning, this search space can be realized from the so-called float am-
biguity solution, while for kinematic positioning it is realized from a code range
solution. An important aspect of this first step in ambiguity resolution is that the
size of the search space will affect the efficiency, i.e., computational speed, of the
process. A larger search space gives a higher number of potential integer ambigu-
ity combinations to assess, which in turn increases the computational burden. This
is important for kinematic applications where a real-time implementation may be
sought. It is, therefore, necessary to balance computational load with a conservative
search space size.

The second major step in the ambiguity resolution process is the identification
of the correct integer ambiguity combination. The criterion used by many ambi-
guity resolution techniques is the selection of the integer combination which min-
imizes the sum of squared residuals in the sense of least-squares adjustment. The
reasoning here comes from the argument that the combination which best fits the
data should be the correct result. However, this can be problematic if there are not
enough redundant satellites.

The third step in the ambiguity resolution process should be a validation (or
verification) of the ambiguities. The assessment of the correctness of the integer
numbers obtained should gain more attention (Verhagen 2004). The ambiguity suc-
cess rate as defined in Joosten and Tiberius (2000) may be used as a tool for de-
termining the probability of correct integer estimation. The ambiguity success rate
depends on three factors: the observation equations (i.e., the functional model), the
precision of the observables (i.e., the stochastic model), and the method of integer
ambiguity estimation.

Although the last two steps based on residual analysis are rather straightfor-
ward, a few remarks should be made with respect to some of the potential difficul-
ties of this approach. The first issue is the basic assumption in least-squares theory
that the residuals should be normally distributed. In many cases, this assumption
is not fulfilled due to systematic effects from multipath, orbital errors, and atmo-
spheric errors. This is the reason why ambiguity resolution generally fails for long
baselines; however, if strong multipath exists, it may even fail for short baselines.
A second related issue is the need for statistical significance when the integer am-
biguity decision is made. This means that the integer ambiguity combination which
best fits the measurements should do so significantly better than all the other com-
binations. Statistical criteria can be used for this decision as will be discussed in
some of the following subsections. Remaining systematic effects mentioned above
play a role here as well as the aspect of time, i.e., ambiguity resolution is more
difficult for shorter time intervals.

This three-step approach, (1) generation of potential integer ambiguity com-
binations, (2) identification of the optimum integer ambiguity combination, and
(3) validation of the ambiguities, may also be refined and expanded. Han and Ri-
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zos (1997) propose six general classes and include the ambiguity recovery tech-
niques (to reestimate ambiguities when cycle slips occur) as well as integrated
models using GNSS measurements and data from other sensors.

Hatch and Euler (1994) propose a respective partitioning into three classes
which is similarly adopted by Kim and Langley (2000):

1. Ambiguity resolution in the measurement domain.
2. Search technique in the coordinate domain.
3. Search technique in the ambiguity domain.

Following this classification, a few key principles from the numerous kinds of
ambiguity resolution techniques will be demonstrated subsequently. Many varia-
tions may be derived (e.g., Mervart 1995, Kim and Langley 2000).

The basic approaches as given in Sect. 7.2.2 belong to the ambiguity resolu-
tion methods in the measurement domain (but are usually combined with a search
technique in the ambiguity domain).

Despite its relatively poor computational efficiency, the ambiguity function
method in Sect. 7.2.3 is one representative example of a search technique in the
coordinate domain.

The overwhelming part of current research is dedicated to the third class, the
search technique in the ambiguity domain. Some examples are given in Sect. 7.2.3.
This class of ambiguity resolution mainly refers to the integer least-squares method
which is theoretically established by the fact that it will yield the optimal solution
in the sense that the probability of correct integer estimation is maximized (Teunis-
sen 1999a, b). Techniques using the integer least-squares method are usually based
on three steps: (1) the float solution, (2) the integer ambiguity estimation, and (3)
the fixed solution. The variance-covariance matrix resulting from the float solu-
tion in the first step is employed for different ambiguity search processes (Kim and
Langley 2000). Representative methods, some of them described in Sect. 7.2.3, are
given in Table 7.3. Sometimes these methods are very similar to each other, e.g.,
OMEGA may be regarded as a refined version of LSAST. Note that Table 7.3 does
not contain methods based on simulations for multiple (more than two) frequency
methods like the three-carrier ambiguity resolution (TCAR) (Forssell et al. 1997,
Vollath et al. 1999).

7.2.2 Basic approaches

Single-frequency phase data

When phase measurements for only one frequency are available, the most direct
approach is as follows. The measurements are modeled by Eq. (7.13), and the lin-
earized equations are processed. Depending on the model chosen, a number of
unknowns (e.g., point coordinates, clock parameters) is estimated along with N in
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Table 7.3. Some representative ambiguity determination methods

Acronym  Method Principal reference(s)

LSAST Least-squares ambiguity Hatch (1990)
search technique

FARA Fast ambiguity resolution Frei and Beutler (1990),
approach Frei (1991)

— Modified Cholesky decom-  Euler and Landau (1992)
position method

LAMBDA Least-squares ambiguity Teunissen (1993, 1995a)
decorrelation adjustment

— Null space method Martin-Neira et al. (1995)
FASF Fast ambiguity search filter ~ Chen and Lachapelle (1994)
OMEGA  Optimal method for est- Kim and Langley (1999)

imating GPS ambiguities

a common adjustment. In this approach, the unmodeled errors affect all estimated
parameters. Therefore, the integer nature of the ambiguities is not exploited, and
they are estimated as real values. To fix ambiguities as integer values, a sequential
adjustment could be performed. After an initial adjustment, the ambiguity with a
computed value closest to an integer and with minimum standard error is consid-
ered to be determined most reliably. This bias is then fixed, and the adjustment is
repeated (with one less unknown) to fix another ambiguity and so on. When using
double-differences over short baselines, this approach is usually successful. The
critical factor is the ionospheric refraction, which must be modeled and which may
prevent a correct resolution of all ambiguities.

For kinematic applications, the initialization, i.e., the ambiguity determination,
is a necessary initial step. Three static methods have been described in the sub-
section ““Static initialization” of Sect. 6.3.5: (1) using a known (and usually short)
baseline (the coordinates of both sites are known), which allows ambiguity reso-
lution after a few observation epochs; (2) static determination of the first baseline;
(3) the antenna swap method.

The kinematic initialization (Sect. 6.3.5) is the on-the-fly (OTF) method. This
is the most advanced technique to resolve phase ambiguities and is described in
more detail in Sect. 7.2.3.

Dual-frequency phase data

The situation for the ambiguity resolution improves significantly when using dual-
frequency phase data. There are many advantages implied in dual-frequency data
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because of the various possible linear combinations that can be formed like the
wide-lane and narrow-lane techniques. Denoting the phase data referring to the
frequencies fi and f> by @ and ®», then, according to Eq. (5.17),

Dy = D) — Dy (7.15)

is the wide-lane signal. The frequency of this signal is fo; = f; — f> and the cor-
responding wavelength is increased compared to the original wavelengths. The in-
creased wide-lane wavelength Ay; provides an increased ambiguity spacing. This
is the key to an easier resolution of the integer ambiguities. To show the principle,
consider the phase models in the modified form, cf. Eq. (7.2):

Oy =afi+N —?,

; (7.16)
Dy=afr+No——,

f

with the geometry term a and the ionosphere term b as known from (5.77). The
difference of the two equations gives

I 1
Oy :af21+N21_b(E_E)’ (7.17)
with the wide-lane quantities
Oy =) - Dy,
fr =fi- 12, (7.18)
Ny =N - N,

The adjustment based on the wide-lane model gives wide-lane ambiguities N,y,
which are more easily resolved than the base carrier ambiguities.

To compute the ambiguities for the measured phases (i.e., Ny for ®; and N, for
@,), divide the first equation of (7.16) by f; and (7.17) by f>1:

(O] N Ny b
— =q —_ - —,
fi ho f
(7.19)
Dy Ny b ( 1 1 )
—=a+—-—|—=-— ,
fa1 S fa\A S
and the difference of the two equations gives
o D N1 N b b (1 1
—1—2:—1—2——2+—(———). (7.20)
ho o h fa ff fa\h S
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The desired ambiguity N; follows explicitly after rearranging and multiplying the
equation above by fi:

S | S b_b(_h
Ny =@ f21(®21 Nzl)+f1 f21(1 fz)' (7.21)

The terms reflecting the ionospheric influence may be treated as follows:

g_i(l_ﬁ)_blefz—flfzﬁLflz
i S S fifa f

:bf21 f2+f1 (fl _fZ) (722)
fl f21 f2

_ L+ h
=b fir’

where on the right side the term in parentheses was replaced by the wide-lane fre-
quency f>1, which then canceled. Therefore, the phase ambiguity N; in (7.21) can
be calculated from the wide-lane ambiguity by

Ny =@ — ]%@21 Ny 4R (7.23)

fif2

and, in an analogous way, for NV, by exchanging the roles of fi and f> in the equation
above accordingly. Equation (7.23) represents the so-called geometry-free linear
phase combination since the geometric distance o and the clock bias term Ad do
not appear explicitly. Note, however, that these terms are implicitly contained in
N3y, cf. Eq. (7.17). The ionospheric term is most annoying. The influence of this
term will be negligible for short baselines with similar ionospheric refraction at
both sites (using differenced phases). For long baselines or irregular ionospheric
conditions, however, the ionospheric term may cause problems.

To eliminate the ionosphere-dependent term b in the computation of the ambi-
guities for the measured phases (e.g., referring to f;), one could proceed as follows.
Start again with the phase equations (7.16) and multiply the first equation by f; and
the second by f,. Form the differences of the resulting equations and, thus,

HO— i =a(ff - fH+HN— N (7.24)

is obtained. Eliminating N, via the relation Ny = N| — Np; leads to

A= fi®r=a(fy = )= ANa +Ni(f2 = f) (7.25)
or, introducing f>;1 = f| — f> and dividing the equation by this relation,
M=o - L@y v - athi+ ) (7.26)

1 1
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results. By simple linear algebra it may be verified that Eq. (7.26) is another repre-
sentation of the ionosphere-free phase combination, cf. Eq. (5.79).

A final remark concerning the ambiguities is appropriate. Combining the terms
containing N; and N into a single term in the geometry-free or ionosphere-free
combination destroys the integer nature of the term. This is a kind of vicious cir-
cle: either the ambiguities may be resolved where the ionosphere is a problem or the
ionospheric influence is eliminated which destroys the integer nature of the ambigu-
ities. The integer nature can be preserved by separately calculating the ambiguities,
first N»; and then Nj by (7.23) or (7.26).

Combining dual-frequency carrier phase and code data

The most unreliable factor of the wide-lane technique described in the previous
paragraph is the influence of the ionosphere, which increases with baseline length.
This drawback can be partially overcome by a combination of phase and code data.
The models for dual-frequency carrier phases and code ranges, both expressed in
cycles of the corresponding carrier, can be written in the form

b
®1=af1—J71+N1,

b
<D2=af2—J72+N2,

, (7.27)
Ry =afi+ JTI’

b
Rz Iafz + E’

with the geometry term a and the ionosphere term b as known from (5.77). Note
that four equations are available with four unknowns for each epoch. The unknowns
are a, b, and the ambiguities Ny, N, and may be expressed explicitly as a function
of the measured quantities by inverting the system represented by (7.27).

Multiplying the third equation of (7.27) by f; and the fourth by f, and differ-
encing the resulting equations yields the geometry term

1
a= ﬂ (Raf2 = Ri1f1). (7.28)

Multiplying now the third equation of (7.27) by f> and the fourth by f; and differ-
encing the resulting equations yields the ionosphere term

b= (R fo - Rofi). (7.29)
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Substituting (7.28) and (7.29) into the first two equations of (7.27) leads to explicit
expressions for the phase ambiguities

Al 2fih

N] = (I)l + 1~ 25
AT .
2 2+ '
N2=®2+ 2f1f22R1 — 22 12R2.
fz - f1 fz - f1
By forming the difference N; = N — N,, finally
Ny = @y - 2 ;ﬁ (R1 +Ry) (7.31)

is obtained. This rather elegant equation allows for the determination of the wide-
lane ambiguity N;; for each epoch and each site. It is independent of the baseline
length and of the ionospheric effects. Even if all modeled systematic effects cancel
out in (7.31), the multipath effect remains and affects phase and code differently.
Multipath is almost exclusively responsible for a variation of N; by several cycles
from epoch to epoch. These variations may be overcome by averaging over a longer
period.

According to Euler and Goad (1991) and Euler and Landau (1992), the ambi-
guity resolution for the combination of dual-frequency code data with a reasonably
low noise level and phase data will be possible “under all circumstances” with a few
epochs of data. The approach described is even appropriate for instantaneous am-
biguity resolution in kinematic applications. Hatch (1990) mentions that a single-
epoch solution is usually possible for short baselines if seven or more satellites can
be tracked. Note that several variations of the technique are known.

Combining triple-frequency carrier phase and code data

The technique based on three carriers is denoted as three-carrier ambiguity resolu-
tion (TCAR). Before pointing out the model equations, a few remarks are appro-
priate when comparing TCAR with the previously described dual-frequency car-
rier phase and code data ambiguity resolution. Theoretically, the four unknowns
a, b, N1, N of (7.27) can be determined instantaneously by solving the four equa-
tions. Thus, in principle the unknowns can be determined epoch by epoch. In reality,
fixing the ambiguities Ny, N> to their correct values will be very unlikely even for
short baselines because of the magnification of noise associated with the algebraic
solution. Therefore, a detour via the wide-lane ambiguities is taken.

Similarly, it may be expected that an instantaneous TCAR solution is also pos-
sible. This expectation becomes true as it may be seen immediately from the triple-
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frequency carrier phase and code data model

b
CD1=af1—J71+N1,

b
(I)zzafz—E-FNz,

b
CD3:af3—]73+N3,

b (7.32)
Rl :afl+ﬁy

b
R2 zaf2+E9

b
R3 :af3+]73,

where, apart from the two carrier phase data on fj, f>, the third carrier phase on f; is
introduced. This system of six equations contains five unknowns: the geometry term
a, the ionosphere term b, and the ambiguities N1, N», N3. Therefore, the system has
the redundancy 1 and could be solved by least-squares adjustment. Note, however,
referring to the estimated ambiguities, Sjoberg (1997, 1998) indicates “that these
estimates are too poor to be useful”. By contrast, it is possible to determine a wide-
lane ambiguity accurately. In Table 7.4, specific values (typical for GNSS) for the
three frequencies and wide-lane combinations are given.
From the dual-frequency approach, cf. Eq. (7.31), the result

fi—f

Ny = 0y —
fit+h

(R1 +Ry) (7.33)

Table 7.4. GNSS frequencies and wide-lane combinations

Frequency MHz Wavelength [m]
fi 1580 0.19
hH 1230 0.24
3 1180 0.25
h-5 400 0.75
h—r 350 0.86
- 50 6.00
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is obtained for the f; — f, combination and
fi—/f
fi+ /3

for the f; — f3 combination. Following from the wide-lane definitions No; = N1 —N»
and N3; = N| — N3, the individual ambiguities are

N3 = @31 -

(R1 +R3). (7.34)

N»=Ni — Ny,
(7.35)
N3 =Nj - N3,

where NV is still unknown and to be determined. These equations are resubstituted
into (7.32), the initial set of model equations:

b
D, =af1—]71+N1,
b
DOy + Ny =afa——+Ni,
by
b
O3+ N3y =afs——+Np,
/3
(7.36)
R fi+ b
=a —,
1 L
b
Ry :af2+]72,
b
R3 =af3+]73,

where the known wide-lane ambiguities N»; and N3; have been shifted to the left
side of the equations. This system of six equations comprises only three unknowns:
a, b and Ny, thus the redundancy amounts to 3. Inherently, this combined data set of
code and phase measurements reflects two accuracy classes because the last three
code range equations are much less accurate compared to the first three mainly
phase-derived equations. Sjoberg (1999) neglects the three code range equations by
arguing that they contribute little to the least-squares solution. With the remaining
phase equations, the calculation of the three unknowns is still possible for a single
epoch.

After the successful computation of the N| ambiguity, the same procedure may
be applied accordingly to get the other two carrier ambiguities N, and N3.

Vollath et al. (1999) use the same set of equations as given in (7.36) but with an
extended modeling of the ionospheric influence and apply a recursive least-squares
adjustment.
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Hatch et al. (2000) conclude that over short baselines the ambiguities may be
resolved much more quickly (often in a single epoch), whereas for longer baselines
there is limited gain from the third frequency. Vollath et al. (1999) conclude simi-
larly that the TCAR procedure will generally not suffice to resolve the ambiguities
instantaneously, i.e., using data of a single epoch unless very short baselines are
considered. Accumulating several epochs will, on the one hand, reduce the noise
but, on the other hand, the main error components caused by the ionosphere and
multipath remain because of their long correlation times. Therefore, a search for
the optimal solution along with a validation is still required. However, the number
of possible candidates for this optimal result is substantially reduced.

Several other procedures exist like the integrated three-carrier ambiguity res-
olution (ITCAR), the cascade integer resolution (CIR) (Jung et al. 2000), which
is essentially the same as ITCAR, or the extension of the null space method from
the dual-frequency method to the triple-frequency approach (Fernidndez-Plazaola et
al. 2004). Verhagen and Joosten (2004) analyse the concepts and performances of
TCAR, ITCAR, CIR, LAMBDA, and the null space method.

Martin-Neira et al. (2003) mention the investigation of the multiple carrier am-
biguity resolution (MCAR), which is manifested by Werner and Winkel (2003) and
briefly described in the next paragraph.

Multiple carrier ambiguity resolution

In the near future of GNSS, the data combination will no longer be restricted to dual
and triple frequencies because more than a single global positioning system will be
available, i.e, the modernized GPS, GLONASS, and Galileo. MCAR will be the
future. The somehow misleading term (dual and triple frequency being also “mul-
tiple” are not included) must be understood in the continuous development of an
increased number of available frequencies. Numerous simulations focus therefore
on possible benefits arising from the potential of a combined use of modernized
GPS and Galileo, e.g., Werner and Winkel (2003), Zhang et al. (2003), Julien et
al. (2004a), Sauer et al. (2004). The investigated benefits address the ambiguity
resolution itself, the initialization performance, reliability, accuracy, and other as-
pects. Not only single baselines are considered but also the influence on a network
of baselines is discussed (Landau et al. 2004).
Feng and Rizos (2005) summarize these benefits in a generic way as follows:

e allowing ambiguity resolution over long distances,
o allowing the fixing of correct integer solutions within much shorter periods,
¢ achieving highly reliable integer solutions,

e enabling RTK positioning in urban areas (where signal obstruction is an is-
sue).
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Many more investigations based on simulations are to be expected for years to
come before the full potential of real modernized GPS and Galileo data may be
exploited. The International Association of Geodesy (IAG) has installed the GNSS
Working Group 4.5.4 (see under www.gnss.com.au) to account for MCAR methods
and applications. Many additional references may be found there.

7.2.3 Search techniques

A standard approach

When processing the data based on double-differences by least-squares adjust-
ment, the ambiguities are estimated as real or floating-point numbers, hence the
first double-difference solution is called the float ambiguity solution. The output is
the best estimate of the station coordinates as well as double-difference ambigui-
ties. If the baseline is relatively short, say five kilometers, and the observation span
relatively long, say one hour, these float ambiguities would typically be very close
to integers. Ambiguity resolution in this case will improve the position accuracy.
The change in the station coordinates from the float solution to the fixed ambiguity
solution should not be large and in the case when ambiguity resolution fails, the
float solution is generally a very good alternative.

As the observation span becomes smaller, the float solution will weaken due
to loss of information. Ambiguity resolution will then play a more important role,
since its effect on the station coordinates will now be significant. If the observation
span is further reduced, the success of ambiguity resolution may determine whether
or not the user’s positioning specifications are met. As this discussion implies, there
is a risk associated with a reduction in the observation span. A wrong integer can
degrade the position solution significantly.

The search space concept can be generated for the static case by considering
the position accuracy of the float ambiguity solution. A conceptually simpler ap-
proach, however, is to directly use the estimated accuracies of the float ambigu-
ities to set their search range. For example, if an ambiguity is estimated to be
87457 341.88 cycles with a standard deviation of 0.30cycles, all the integer am-
biguities that fall within + 3 standard deviations of that value (for a high statistical
probability) might be searched. This would give potential integer ambiguities of
87457340 to 87 457 343 by being conservative. This procedure can be repeated for
each of the double-difference ambiguities and the result is a set of potential integer
ambiguity combinations.

The number of ambiguity sets to be considered depends on the number of satel-
lites tracked and the search range of the double-difference ambiguities. For exam-
ple, there are five ambiguities if six satellites are tracked and if the range for each
ambiguity is three cycles, the number of combinations to test is 3° = 243. If the
search range is increased to five cycles, the total number of combinations is 3 125.
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Once all the potential ambiguity combinations are identified, each one is tested
by constraining (fixing) the ambiguities to the selected integer combination and
then computing the measurement residuals. The total redundancy is increased in the
fixed ambiguity adjustment since only the station coordinates are estimated. How-
ever, the residuals are larger than for the float ambiguity solution. King et al. (1987)
present a technique by which the influence of various integer ambiguity combina-
tions can be computed from the float ambiguity solution, rather than initiating a
new least-squares adjustment for each of the potential ambiguity combinations.

The sum of squared residuals is used as the final measure of the fit of the am-
biguity combination. The integer ambiguity solution corresponding to the smallest
sum of squared residuals should be the candidate which is selected. Due to reasons
stated earlier, however, no candidate may be significantly better than the other to
warrant selection. A ratio test is often used to make this decision. For example, if
the ratio of the second smallest sum of squared residuals to the smallest sum of
squared residuals is 2 or 3 (depending on the algorithm), then a decision to select
the smallest sum of squared residuals as the true solution can be made. Otherwise,
no integer ambiguity solution can be determined and then the best estimate for the
station coordinates is the float ambiguity solution.

An example given in Cannon and Lachapelle (1993) will illustrate this concept.
On a 720m baseline, six satellites were tracked for 10 minutes. Using double-
differences with satellite 19 as reference, the least-squares approach yielded for the
ambiguities the following values in cycles:

DD SV Float ambiguity

2-19 17329426.278
6-19 14178 677.032
11-19 11027757.713
16 - 19 -1575518.876
18—-19 | —=15754175.795

The abbreviation DD SV indicates double-differences (DD) for the specified
space vehicle (SV) numbers. To get integer values, the float solution is simply
rounded to the nearest integer values. To check this solution, possible other am-
biguity sets are established by varying each ambiguity in a certain range, say by
+2 cycles, so that, apart from the integer solution obtained from the table above,
each ambiguity is varied by —2, —1 and +1, +2 cycles. This means that for each
ambiguity five cases are checked. Considering the five double-differences, in total
5% = 3125 possible integer sets arise which are to be compared with respect to the
sum of the squared residuals. Subsequently, the results for the three smallest sums
of squared residuals (abbreviated as SSR) are given:
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1stsmallest | 2nd smallest | 3rd smallest

SSR =0.044 | SSR =0.386 | SSR = 0.453

DD SV | Ambiguity | Ambiguity | Ambiguity
2-19 17329426 17329426 17329426
6-19 14178 677 14178 676 14178 678
11-19 11027758 11027757 11027759
16 — 19 -1575519 -1575518 -1575520
18 =19 | —15754176 | —15754176 | —15754176

The ambiguity set with the smallest sum of squared residuals is likely to repre-
sent the correct integers only if its SSR compared to the 2nd smallest SSR is sig-
nificantly smaller. The ratio, which amounts to 0.386/0.044 = 8.8 in the example
above, should be greater than 3, a threshold which has been determined empirically.

To demonstrate a failing of the ratio test, the same example is taken but the data
set is reduced to 5 minutes instead of the original 10 minutes. The results for the
double-difference float solution are:

DD SV Float ambiguity
2-19 17329 426.455
6-19 14178677.192

11-19 11027757.762

16 - 19 -1575518.471

18-19 | -15754175.411

When checking again the same 3 125 possible integer ambiguity sets as before, the
following ambiguity sets represent the best solutions in the sense of minimal sum
of squared residuals:

1stsmallest | 2nd smallest | 3rd smallest
SSR =0.137 | SSR =0.155 | SSR =0.230

DD SV | Ambiguity | Ambiguity | Ambiguity
2-19 17329425 17329426 17329426
6-19 14178 675 14178 677 14178 675
11-19 11027757 11027758 11027756
16 - 19 -1575516 —-1575519 —-1575518
18 =19 | —15754175 | —15754176 | —15754175

The ratio test for the smallest and the second smallest yields 0.155/0.137 = 1.1
and, thus, fails. This means that from the statistical point of view with regard to
the squared sum of residuals, the correct solution cannot be extracted safely. Note,
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however, that the solution of the second smallest sum of squared residuals gives the
correct integer ambiguities (as compared to the solution of the full 10-minute data
set), but from the chosen criterion of the ratio this is not recognizable. This shows
that the technique of comparing the sum of squared residuals is certainly not the
most advanced technique.

Ambiguity resolution on-the-fly

The notation “on-the-fly” reflects any type of rover motion. The terms AROF (am-
biguity resolution on-the-fly), OTF (on-the-fly), and sometimes OTR (on-the-run)
are different abbreviations with the same meaning, namely the development of am-
biguity resolution techniques for the kinematic case. Numerous techniques have
been developed to deal with the kinematic case.

Code ranges are generally used to define the search space for the kinematic
case. A relative code range position is used as the best estimate of antenna location,
and the associated standard deviations are used to define the size of the search
space. This space can be determined in several ways, for example, it can be a cube,
a cylinder, or an ellipsoid.

In order to reduce the number of integer ambiguity combinations to be tested,
the code solution should be as accurate as possible, which means that receiver se-
lection becomes important. The availability of low noise, narrow correlator-type
code ranges is advantageous since they have a resolution in the order of 10cm as
well as improved multipath reduction compared with standard code receivers.

An example is used to show the direct correlation between the code accuracy
and the size of the potential ambiguities to be searched. Suppose a standard code
receiver is used to define the search cube. The accuracy of the resulting position is
approximately 2 m to give a cube size of 4 m on a side. If six satellites are tracked,
there are five double-difference ambiguities to consider. The search range for each
ambiguity is approximately 4 m/0.2 m = 20cycles (where a typical phase wave-
length of 0.2 m is considered) to give 20° = 3.2 million total combinations. If, in
contrast, a narrow correlator-type receiver is used, the accuracy of the resulting po-
sition is approximately 1 m to give a cube of 2m on a side and a search range of
2m/0.2m = 10cycles. Under the same six-satellite geometry, the total combina-
tions are reduced to 103 = 100 000, which is a significant difference.

The importance of the carrier phase wide lane should be mentioned here in the
context of the number of potential ambiguity combinations. If the above example is
repeated using a wide lane with a wavelength of 86 cm (cf. Table 7.4), the number of
potential ambiguities for a narrow correlator-type receiver would be about 35. The
advantage of using this observable instead of the original carrier phase is clear as
it tremendously reduces the search time. The only disadvantage of using the wide
lane is that the measurement is significantly noisier than the single phase. Many
OTF implementations use the wide lane to resolve integer ambiguities and then use
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the resulting position to directly compute the ambiguities on the original carrier
phase data, or at least to significantly limit the number of single-phase ambiguities
to be considered. The wide lane is also used extensively for fast static applications
where the station occupation time is limited.

The OTF techniques have common features like, e.g., the determination of
an initial solution; they differ only in how these features are carried out. A sum-
mary of the main features is given in Table 7.5 which is closely related to Erick-
son (1992b). As far as the search technique (domain, space, reduction of trials) is
concerned, there are also combinations of several listed characteristics (e.g., Abidin
et al. 1992). Illustrative graphic representations of search spaces lead to an easier
understanding of the reduction of trials, see Hatch 1991, Erickson 1992a, Frei and
Schubernigg 1992, Abidin 1993.

Table 7.5. Characteristics and options for OTF ambiguity
resolution techniques

Initial solution e Code solution for position X, ¥, Z and its accuracy
ox, Oy, Oz

e Carrier solution for X, ¥, Z and N; and accuracies
ox, Oy, Oz, O'Nj

Search domain e Test points (three-dimensional space)

Ambiguity sets (n-dimensional integer space, where

n is the number of ambiguities)

ko X ko Y, ko VA

ko N;

Empirically

Statistically

Grid search (fine, coarse)

Double-difference plane intersection

Statistically (e.g., correlation of ambiguities)

Maximum ambiguity function

Minimum variance O'%

Ratio of largest and second largest ambiguity

function

Ratio of smallest and second smallest variance a’%

Instantaneous

Some minutes

Single- or dual-frequency

Phase only or phase and code

Search space
Determination of k

Reduction of trials

Selection criterion

Acceptance criterion

Observation period

Data required
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The double-difference plane intersection method to reduce the number of tri-
als as mentioned in Table 7.5 requires a brief explanation. Positions are derived
from three double-differences with sets of possible ambiguities. Geometrically,
each (linearized) double-difference with its trial ambiguity defines a plane in three-
dimensional space (Hatch 1990). Thus, the intersection of three planes yields a
possible solution position. The grid spacing is the wavelength of the carrier and is
equivalent to the grid spacing in the ambiguity search domain.

Minimizing the variance o-% as selection criterion is in principle the same as
minimizing the sum of the squared residuals. If the position of the receiver is elim-
inated by a mapping function, as proposed by Walsh (1992), the residuals reflect
the ambiguities only.

The subsequent paragraphs explain some out of the many OTF techniques that
can be used. Examples are the ambiguity function method, the least-squares am-
biguity search, the fast ambiguity resolution approach, the fast ambiguity search
filter, least-squares ambiguity decorrelation adjustment method, and ambiguity de-
termination with special constraints.

Numerous approaches may be found in publications. Here are some examples:
the fast ambiguity resolution using an integer nonlinear programming method (Wei
and Schwarz 1995b); a maximum likelihood method based on undifferenced phases
(Knight 1994); the fitting of individual epoch residuals for potential ambiguity can-
didates to low-order polynomials (Borge and Forssell 1994). Additional methods
may be found in the review papers by Chen and Lachapelle (1994), Hatch and
Euler (1994), Hein (1995).

Ambiguity function method

Counselman and Gourevitch (1981) proposed the principle of the ambiguity func-
tion, Remondi (1984, 1990a) and Mader (1990) further investigated this method.
The concept will become clear from the following description. Assume the model
(6.43) for the single-difference phase represented by

‘ 1 ‘
Q) ,(1) = 1 04D + Nip+ fSap(0) (7.37)
for the receiver sites A and B, and the satellite ;. If point A is assumed known and

B is a selected candidate from the gridded cube, then the term Qi (1) is known and
may be shifted to the left side of the equation:

. 1 .
(1) ~ 7 040 = Ny + £ San(). (7.38)

The key is to circumvent the ambiguities Ni - A special effect occurs if the term
27rN1{‘B is used as the argument of a cosine or sine function because lew is an
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Fig. 7.2. Vector representation in the complex plane

integer. Therefore, the whole expression (7.38) is multiplied by 27 and placed into
the complex plane by raising both the left and right side to the power of ¢' = exp{i},
where i = V-1 is the imaginary unit. In detail,

, : o , :
exp {z[zn @ (1) - = QQB(z)]} = exp{i[27 N}, + 27 f o48(1)]} . (7.39)
where the right side may also be written as
exp {i 270 N o} exp (i 27 f 45(1)} - (7.40)

It is illustrative to consider this situation in the complex plane (Fig. 7.2). Note the
equivalence

expf{ia} = cosa +i sina, (7.41)

which may be represented as a unit vector with the components cos @ and sin « if a
real axis and an imaginary axis are used. Therefore,

exp {i 21 N o} = cos(2r N ) +i sinQr N{p) = 1+ -0 (7.42)

results because of the integer nature of N j - Hence, for one epoch and one satellite,
(7.39) reduces to

. oo
exp {i[27r @), (1) - 7” QQB(t)]} = exp {i 27 f 5a(1)) (7.43)
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by applying (7.40) and (7.42). Considering n; satellites and forming the sum over
these satellites for the epoch ¢ leads to

UN

. o0
Z exp {i[Zn d)i‘B(t) - 77r Qi‘B(t)]} =nsexp{i2n f oa5(t)} . (7.44)
j=1

Considering more than one epoch, the fact that the clock error d45(f) varies
with time must be taken into account. Recall that exp{i 27 f d4p(¢)} is a unit vector
as indicated in Fig. 7.2. Thus, when |lexp{i 27 f dap(H)}|| = 1 is applied to (7.44),
the relation

ns

. o
> exp {i[2n @), - = ¢} B(z)]}H = n, (7.45)

=1

is obtained, where the clock error has now vanished.

Take for example four satellites and an error-free situation (i.e., neither mea-
surement errors nor model errors, and correct coordinates for the points A and B).
In this case, the evaluation of the left side of (7.45) should yield 4, where (Dim(t)

are the single-differences of measured phases and Qi (1) can be calculated from the
known points and satellite positions. However, if point B was chosen incorrectly,
then the result must be less than 4. In reality, this maximum can probably never be
achieved precisely because of measurement errors and incomplete modeling. Thus,
the task is restricted to obtaining the maximum of (7.45) by varying B.

With highly stable receiver clocks and close epoch spacing it is theoretically
possible to include more than one epoch within the absolute value. Using n; epochs,
the contribution of all epochs may be summed up by

n

2,

t=1

ns

. o
D, exp {i [2r 0 - = @igm]}H = n;ny, (7.46)

=

where for simplicity the same number of satellites at all epochs is assumed. Fol-
lowing Remondi (1984, 1990a), the left side of (7.46) is denoted as an ambiguity
function. Analogous to the case with one epoch, the maximum of the ambiguity
function must be found. In general it will, as before, be less than the theoretical
value n; n.

The ambiguity function procedure is simple. Assume an approximate solution
for point B, e.g., achieved by triple-differences. Then, place this solution into the
center of a cube (Fig. 7.3) and partition the cube into grid points. Each grid point
is a candidate for the final solution, and the ambiguity function (7.46) is calculated
for all single-differences. The grid point yielding the maximum ambiguity function
value, which should theoretically be equal to the total number of single-differences
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Fig. 7.3. Search space

(i.e., ny ny), is the desired solution. Having found this solution, the ambiguities
could be computed using double-differences. Also, an adjustment using double-
differences might be performed to verify the position of B and the ambiguities. The
computation of point B with fixed ambiguities is the final step.

It is worth noting that the ambiguity function method is completely insensitive
to cycle slips. The reason can easily be seen from Eq. (7.42). Even if the ambiguity
changes by an arbitrary integer amount Aijx > then expli 27 (Nj‘ ' ANi p)} s still
a unit vector and the subsequent equations, therefore, remain unchanged. Other
methods require that cycle slips be repaired before computing the ambiguity.

Remondi (1984) shows detailed examples of how to speed up the procedure,
how to choose the density of the grid points within the cube, and how to find the
correct maximum if there are many relative maxima for the ambiguity function.
These considerations are significant, since the computational burden could, other-
wise, become overwhelming. For illustrative purposes, assume a 6m X 6 m X 6 m
cube with a one centimeter grid. Then (601)% ~ 2.17 - 10% possible solutions must
be checked with the ambiguity function (7.46).

Least-squares ambiguity search technique

The method described here is investigated in further details in Hatch (1990, 1991).
The least-squares ambiguity search technique (LSAST) requires an approximate
solution for the position which may be obtained from a code range solution. The
search area may be established by surrounding the approximate position by a 3o
region. One of the basic principles of the approach is the separation of the satellites
into a primary and a secondary group. The primary group consists of four satel-
lites. Based on these four satellites, which should have a good position dilution of
precision (Sect. 7.3.4), the possible ambiguity sets are determined. The remaining
secondary satellites are used to eliminate candidates of the possible ambiguity sets.

The set of potential solutions may be found in the following way. Assume the
simplified double-difference model (7.14). If the ambiguities are moved to the left
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side as if they were known, the model reads 1 ® — N = o, where all indices have
been omitted. For four satellites, three equations of this type may be set up. The
three unknown station coordinates contained in the right side of the equation may
be solved by linearizing o and inverting the 3 X 3 design matrix. Specifying and
varying the three ambiguities on the left side gives new position solutions, whereas
the inverted design matrix remains unchanged. Depending on the variation of the
three ambiguities, the set of potential solutions is obtained. Note that Hatch (1990)
does not use double-differences but undifferenced phases to avoid any biasing.

From the set of potential solutions, incorrect solutions are removed by taking
into account the information of the secondary group of satellites. Sequential least-
squares adjustment would be appropriately used for this task. Finally, the sum of the
squared residuals may be taken as criterion for the quality indicator of the solution.
Ideally, only the true set of ambiguities should remain. If this is not the case, then,
as described previously, the solution with the smallest sum of squared residuals
should be chosen (after comparing it with the second smallest sum).

Fast ambiguity resolution approach

The development of the fast ambiguity resolution approach (FARA) is given in
Frei (1991) and summarized in Frei and Schubernigg (1992). Following the latter
publication, the main characteristics are (1) to use statistical information from the
initial adjustment to select the search range, (2) to use information of the variance-
covariance matrix to reject ambiguity sets that are not acceptable from the statistical
point of view, and (3) to apply statistical hypothesis testing to select the correct set
of integer ambiguities.

Following Erickson (1992a), the FARA algorithm may be partitioned into four
steps: (1) computing the float carrier phase solution, (2) choosing ambiguity sets to
be tested, (3) computing a fixed solution for each ambiguity set, and (4) statistically
testing the fixed solution with the smallest variance.

In the first step, real values for double-difference ambiguities are estimated
based on carrier phase measurements and calculated by an adjustment procedure
which also computes the cofactor matrix of the unknown parameters and the a pos-
teriori variance of unit weight (a posteriori variance factor). Based on these results,
the variance-covariance matrix of the unknown parameters and the standard devia-
tions of the ambiguities may also be computed.

In the second step, the criteria for the ambiguity ranges to be investigated are
based on confidence intervals of the real values of the ambiguities. Therefore, the
quality of the initial solution of the first step affects the possible ambiguity ranges.
In more detail, if o represents the standard deviation of the ambiguity N, then
+k oy is the search range for this ambiguity, where k is derived statistically from
Student’s ¢-distribution. This is the first criterion for selecting possible ambiguity
sets.
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A second criterion is the use of the correlation of the ambiguities. Assuming
the double-difference ambiguities N; and N; and the difference

Nij=N;-N;, (7.47)

the standard deviation follows from the error propagation law as

Ny = A0, = 20w, + T (7.48)
where 0'12\,, ONN;» and O'N are contained in the variance-covariance matrix of the
parameters. The search range for the ambiguity difference N;; is k;j on;;, where
ki; is analogous to the search range for individual double-difference amblgultles.
This criterion significantly reduces the number of possible integer sets. An even
more impressive reduction is achieved if dual-frequency phase measurements are
available. Illustrative figures demonstrating this reduction are given in Frei and
Schubernigg (1992).

In the third step, least-squares adjustment with fixed ambiguities is performed
for each statistically accepted ambiguity set yielding adjusted baseline components
and a posteriori variance factors.

In the fourth and final step, the solution with the smallest a posteriori variance
is further investigated. The baseline components of this solution are compared with
the float solution. If the solution is compatible, it is accepted. As shown in Er-
ickson (1992a), the compatibility may be checked by a y2-distribution which tests
the compatibility of the a posteriori variance with the a priori variance. Further-
more, another test may be applied to ensure that the second smallest variance is
sufficiently less likely than the smallest variance. Note, however, that these two
variances are not independent (Teunissen 1996: Sect. 8.2.3).

As seen from the algorithm, FARA only requires data for double-difference
phases; thus, in principle, neither code data nor dual-frequency data are required;
however, if these data are added, the number of possible ambiguity sets increases
dramatically (see the second step of the algorithm).

Euler et al. (1990) present an efficient and rapid search technique, similar to
FARA based on the a posteriori variance (resulting from the sum of the squared
residual errors). First, an integer set of ambiguities is introduced in the adjustment
computation as constraints leading to an initial solution and the corresponding a
posteriori variance. The influence of other ambiguity sets on the initial solution
and the a posteriori variance is then determined without recomputing the whole
adjustment. This influence may be calculated by some simple matrix and vector
operations where only a reduced matrix with the dimension of the constraint ambi-
guities must be inverted. Following Landau and Euler (1992), the computation time
for the matrix inversion may be optimized when the Cholesky factorization method
is applied which decomposes a symmetric matrix into a product of a lower and an
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upper triangle matrix. The impact of a changed ambiguity set on the sum of the
squared residuals may be reduced by the Cholesky factorization to the computation
of an inner product of two vectors. Furthermore, not even the full inner product
must be computed in all cases. Based on a threshold, the computation of the inner
product for some integer ambiguity sets may be interrupted and the corresponding
ambiguity set rejected.

The performance of this method is demonstrated in Landau and Euler (1992).
Assuming six satellites and therefore five double-difference ambiguities with a 10-
cycle uncertainty each, the total number of possible combinations is 3.2 millions.
Using a 486 PC (even if this is pretty old-fashioned today, the ratio of the given re-
sults is still a good indicator of the performance), the computation by the Cholesky
factorization took 49.1 seconds. Optimizing the Cholesky factorization by intro-
ducing the above mentioned threshold for the inner product, the computation time
reduces to 0.2 seconds. For a larger search window of +50 cycles, the correspond-
ing computations amount to 1.5 days for the Cholesky factorization and 3 seconds
for the optimized method. The method may be extended to dual-frequency data.
The appropriate formulas are given in Landau and Euler (1992).

The search techniques described so far performed the search in the ambiguity
domain. An alternate technique substitutes the position as known and solves for the
ambiguities as unknowns. This could be performed in the following way. Eliminate
the ambiguities by forming triple-differences and obtain a first estimate for the
position and its standard deviation o by an adjustment. Now center the approximate
position within a cube of dimension +30 in each coordinate direction and partition
the cube into a regular spatial grid. The cube, thus, contains a matrix of points where
the center point is the triple-difference solution (Fig. 7.3). Each of these grid points
is considered a candidate for the correct solution. Consequently, one by one, each
candidate position is substituted into the observation equation. Then the adjustment
(holding the trial position fixed) is performed and the ambiguities are computed.
When all points within the cube have been considered, select the solution where
the estimated real values of the ambiguities appear as close as possible to integer
values. Now, fix the ambiguities 